Friction weakening by mechanical vibrations: A velocity-controlled process

  • V. Vidal
  • C. Oliver
  • H. Lastakowski
  • G. Varas
  • J. -C. GéminardEmail author
Regular Article


Frictional weakening by vibrations was first invoked in the 70s to explain unusual fault slips and earthquakes, low viscosity during the collapse of impact craters or the extraordinary mobility of sturzstroms, peculiar rock avalanches which travels large horizontal distances. This mechanism was further invoked to explain the remote triggering of earthquakes or the abnormally large runout of landslides or pyroclastic flows. Recent experimental and theoretical works pointed out that the key parameter which governs frictional weakening in sheared granular media is the characteristic velocity of the vibrations. Here we show that the mobility of the grains is not mandatory and that the vibration velocity governs the weakening of both granular and solid friction. The critical velocity leading to the transition from stick-slip motion to continuous sliding is in both cases of the same order of magnitude, namely a hundred microns per second. It is linked to the roughness of the surfaces in contact.

Graphical abstract


Flowing matter: Nonlinear Physics and Mesoscale Modeling 


  1. 1.
    S. Sambursky, The Physical World of Late Antiquity (Princeton University Press, 1962) p. 188Google Scholar
  2. 2.
    T. Baumberger, F. Heslot, B. Perrin, Nature 367, 544 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    C. Marone, Annu. Rev. Earth Planet. Sci. 26, 643 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    S. Nasuno, A. Kudrolli, A. Bak, J.P. Gollub, Phys. Rev. E 58, 2161 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    T. Baumberger, C. Caroli, Adv. Phys. 55, 279 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G.S. Collins, H.J. Melosh, J. Geophys. Res. 108, 2473 (2003)ADSGoogle Scholar
  7. 7.
    A. Lucas, A. Mangeney, J.P. Ampuero, Nat. Commun. 5, 3417 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    K. Xia, S. Huang, C. Marone, Geochem. Geophys. Geosyst. 14, 1012 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C. Levy, A. Mangeney, F. Bonilla, C. Hibert, E.S. Calder, P. Smith, J. Geophys. Res. 120, 7536 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Melosh, J. Geophys. Res. 84, 7513 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Melosh, Nature 379, 601 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Johnson, X. Jia, Nature 437, 871 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M.G. Rozman, M. Urbakh, J. Klafter, Phys. Rev. E 57, 7340 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    J. Gao, W.D. Luedtke, U. Landman, J. Phys. Chem. B 102, 5033 (1998)CrossRefGoogle Scholar
  15. 15.
    P.A. Johnson, H. Savage, M. Knuth, J. Gomberg, C. Marone, Nature 451, 57 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R. Capozza, A. Vanossi, A. Vezzani, S. Zapperi, Phys. Rev. Lett. 103, 085502 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R. Capozza, S.M. Rubinstein, I. Barel, M. Urbakh, J. Fineberg, Phys. Rev. Lett. 107, 024301 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M.F. Melhus, I.S. Aranson, Granular Matter 14, 151 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Giacco, E. Lippiello, M. Pica Ciamarra, Phys. Rev. E 86, 016110 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    F. Giacco, L. Saggese, L. de Arcangelis, E. Lippiello, M. Pica Ciamarra, Phys. Rev. Lett. 115, 128001 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    H. Lastakowski, J.C. Géminard, V. Vidal, Sci. Rep. 5, 13455 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    A. Gnoli, L. de Arcangelis, F. Giacco, E. Lippiello, M. Pica Ciamarra, A. Puglisi, A. Sarracino, Phys. Rev. Lett. 120, 138001 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Dijksman, G.H. Wortel, L.T.H. van Dellen, O. Dauchot, M. van Hecke, Phys. Rev. Lett. 107, 108303 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    G. Wortel, O. Dauchot, M. van Hecke, Phys. Rev. Lett. 117, 198002 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    X. Jia, T. Brunet, J. Laurent, Phys. Rev. E 84, 020301(R) (2011)ADSCrossRefGoogle Scholar
  26. 26.
    E. DeGiuli, G. Düring, M. Wyart, Phys. Rev. E 91, 062206 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    B. Ferdowsi, M. Griffa, R.A. Guyer, P.A. Johnson, C. Marone, J. Carmeliet, Geophys. Res. Lett. 42, 9750 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    E. DeGiuli, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 114, 9284 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Gu, J.R. Rice, A.L. Ruina, S.T. Tse, J. Mech. Phys. Solids 32, 167 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    J.R. Rice, S.T. Tse, J. Geophys. Res. 91, 521 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids I (Clarendon Press, London, 1950)Google Scholar
  32. 32.
    M. Alava, K. Niskanen, Rep. Prog. Phys. 69, 669 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    H. Alarcón, J.C. Géminard, F. Melo, Phys. Rev. E 86, 061303 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    C. Derec, A. Ajdari, F. Lequeux, Eur. Phys. J. E 2, 355 (2001)CrossRefGoogle Scholar
  35. 35.
    A. Pons, A. Amon, T. Darnige, J. Crassous, E. Clément, Phys. Rev. E 92, 020201(R) (2015)ADSCrossRefGoogle Scholar
  36. 36.
    P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Nat. Commun. 5, 3725 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S. Borodulina, A. Kulachenko, S. Galland, M. Nygårds, Nord. Pulp Paper Res. J. 27, 318 (2012)CrossRefGoogle Scholar
  38. 38.
    B. Ferdowsi, M. Griffa, R.A. Guyer, P.A. Johnson, J. Carmeliet, Acta Mech. 225, 2227 (2014)CrossRefGoogle Scholar
  39. 39.
    P.A. Johnson, B. Carpenter, M. Knuth, B.M. Kaproth, P.Y. Le Bas, E.G. Daub, C. Marone, J. Geophys. Res. 117, B04310 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    J. Gomberg, P.A. Reasenberg, P. Bodin, R.A. Harris, Nature 411, 462 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. Vidal
    • 1
  • C. Oliver
    • 2
  • H. Lastakowski
    • 1
  • G. Varas
    • 2
  • J. -C. Géminard
    • 1
    Email author
  1. 1.Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRSLyonFrance
  2. 2.Instituto de Fisica, Pontificia Universidad Católica de ValparaisoValparaisoChile

Personalised recommendations