Advertisement

European Space Agency experiments on thermodiffusion of fluid mixtures in space

  • M. BraibantiEmail author
  • P. -A. Artola
  • P. Baaske
  • H. Bataller
  • J. -P. Bazile
  • M. M. Bou-Ali
  • D. S. Cannell
  • M. Carpineti
  • R. Cerbino
  • F. Croccolo
  • J. Diaz
  • A. Donev
  • A. Errarte
  • J. M. Ezquerro
  • A. Frutos-Pastor
  • Q. Galand
  • G. Galliero
  • Y. Gaponenko
  • L. García-Fernández
  • J. Gavaldá
  • F. Giavazzi
  • M. Giglio
  • C. Giraudet
  • H. Hoang
  • E. Kufner
  • W. Köhler
  • E. Lapeira
  • A. Laverón-Simavilla
  • J. -C. Legros
  • I. Lizarraga
  • T. Lyubimova
  • S. Mazzoni
  • N. Melville
  • A. Mialdun
  • O. Minster
  • F. Montel
  • F. J. Molster
  • J. M. Ortiz de Zárate
  • J. Rodríguez
  • B. Rousseau
  • X. Ruiz
  • I. I. Ryzhkov
  • M. Schraml
  • V. Shevtsova
  • C. J. Takacs
  • T. Triller
  • S. Van Vaerenbergh
  • A. Vailati
  • A. Verga
  • R. Vermorel
  • V. Vesovic
  • V. Yasnou
  • S. Xu
  • D. Zapf
  • K. Zhang
Colloquium
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

References

  1. 1.
    C. Soret, Arch. Sci. Phys. Nat. Geneve 2, 48 (1879)Google Scholar
  2. 2.
    C. Ludwig, Sitzber. Akad. Wiss. Wien Math.-Naturw. Kl. 20, 539 (1856)Google Scholar
  3. 3.
    F. Montel, J. Bickert, A. Lagisquet, G. Galliero, J. Pet. Sci. Eng. 58, 391 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio, Nat. Commun. 2, 290 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    P. Baaske, H. Bataller, M. Braibanti, M. Carpineti, R. Cerbino, F. Croccolo, A. Donev, W. Kohler, J.M. Ortiz de Zarate, A. Vailati, Eur. Phys. J. E 39, 119 (2016)CrossRefGoogle Scholar
  6. 6.
    V. Shevtsova, Y.A. Gaponenko, V. Sechenyh, D.E. Melnikov, T. Lyubimova, A. Mialdun, J. Fluid Mech. 767, 290 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Shevtsova, T. Lyubimova, Z. Saghir, D. Melnikov, Y. Gaponenko, V. Sechenyh, J.C. Legros, A. Mialdun, J. Phys.: Conf. Ser. 327, 012031 (2011)Google Scholar
  8. 8.
    S. Mazzoni, V. Shevtsova, A. Mialdun, D. Melnikov, Y. Gaponenko, T. Lyubimova, M.Z. Saghir, Europhys. News 41, 14 (2010)CrossRefGoogle Scholar
  9. 9.
    J.M. Ortiz de Zarate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)Google Scholar
  10. 10.
    D. Ronis, I. Procaccia, Phys. Rev. A 26, 1812 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    P.N. Segre, R.W. Gammon, J.V. Sengers, Phys. Rev. E 47, 1026 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    W.B. Li, K.J. Zhang, J.V. Sengers, R.W. Gammon, J.M. Ortiz de Zarate, Phys. Rev. Lett. 81, 5580 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    W.B. Li, P.N. Segre, R.W. Gammon, J.V. Sengers, Physica A 204, 399 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    W.B. Li, P.N. Segre, J.V. Sengers, R.W. Gammon, J. Phys.-Conden. Matter 6, 119 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    P.N. Segre, J.V. Sengers, Physica A 198, 46 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    P.N. Segre, R. Schmitz, J.V. Sengers, Physica A: Stat. Mech. Appl. 195, 31 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    A. Vailati, M. Giglio, Phys. Rev. Lett. 77, 1484 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    A. Vailati, M. Giglio, Prog. Colloid Polym. Sci. 104, 76 (1997)CrossRefGoogle Scholar
  19. 19.
    M.M. Wu, G. Ahlers, D.S. Cannell, Phys. Rev. Lett. 75, 1743 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    J. Oh, J.M. Ortiz de Zarate, J.V. Sengers, G. Ahlers, Phys. Rev. E 69, 021106 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    F. Giavazzi, A. Vailati, Phys. Rev. E 80, 015303(R) (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C.J. Takacs, G. Nikolaenko, D.S. Cannell, Phys. Rev. Lett. 100, 234502 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    F. Croccolo, L. Garcia-Fernandez, H. Bataller, A. Vailati, J.M. Ortiz de Zarate, Phys. Rev. E 99, 012602 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Ortiz de Zarate, F. Peluso, J.V. Sengers, Eur. Phys. J. E 15, 319 (2004)CrossRefGoogle Scholar
  25. 25.
    A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, G. Nikolaenko, C.J. Takacs, D.S. Cannell, W.V. Meyer, A.E. Smart, Appl. Opt. 45, 2155 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    F. Croccolo, D. Brogioli, Appl. Opt. 50, 3419 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S.P. Trainoff, D.S. Cannell, Phys. Fluids 14, 1340 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    C.J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, D.S. Cannell, Phys. Rev. Lett. 106, 244502 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    R. Cerbino, Y.F. Sun, A. Donev, A. Vailati, Sci. Rep. 5, 14486 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M. Lagues, A. Lesne, Invariances d'echelle (Belin, 2003)Google Scholar
  31. 31.
    D. Brogioli, F. Croccolo, A. Vailati, Phys. Rev. E 94, 022142 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, A. Vailati, Micrograv. Sci. Technol. 28, 467 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J.K. Platten, M.M. Bou-Ali, P. Costeseque, J.F. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, G. Wittko, Philos. Mag. 83, 1965 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    A. Mialdun, I. Ryzhkov, O. Khlybov, T. Lyubimova, V. Shevtsova, J. Chem. Phys. 148, 044506 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    M.M. Bou-Ali, A. Ahadi, D.A. de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Kohler, M. Larranaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Vaerenbergh, Eur. Phys. J. E 38, 30 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Gebhard, W. Köhler, J. Chem. Phys. 143, 164511 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    S. Hartmann, G. Wittko, W. Köhler, K. Morozov, K. Albers, G. Sadowski, Phys. Rev. Lett. 109, 065901 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    A. Mialdun, V. Shevtsova, J. Chem. Phys. 143, 224902 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    G. Wittko, W. Köhler, Eur. Phys. J. E. 21, 283 (2006)CrossRefGoogle Scholar
  40. 40.
    T. Triller, D. Sommermann, M. Schraml, F. Sommer, E. Lapeira, M.M. Bou-Ali, W. Köhler, Eur. Phys. J. E 42, 27 (2019)CrossRefGoogle Scholar
  41. 41.
    T. Triller, H. Bataller, M.M. Bou-Ali, M. Braibanti, F. Croccolo, J.M. Ezquerro, Q. Galand, J. Gavalda, E. Lapeira, A. Laveron-Simavilla, T. Lyubimova, A. Mialdun, J.M. Ortiz de Zarate, J. Rodriguez, X. Ruiz, I.I. Ryzkhov, V. Shevtsova, S. Van Vaerenbergh, W. Köhler, Micrograv. Sci. Technol. 30, 295 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    V.V. Sechenyh, J.C. Legros, V. Shevtsova, J. Chem. Thermodyn. 43, 1700 (2011)CrossRefGoogle Scholar
  43. 43.
    I. Lizarraga, C. Giraudet, F. Croccolo, M.M. Bou-Ali, H. Bataller, Micrograv. Sci. Technol. 28, 545 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J. Rauch, W. Köhler, Phys. Rev. Lett. 88, 185901 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    W. Enge, W. Köhler, Phys. Chem. Chem. Phys. 6, 2373 (2004)CrossRefGoogle Scholar
  47. 47.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet., Ser. B 51, 793 (1948)Google Scholar
  48. 48.
    M. Kardar, R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    T.R. Kirkpatrick, J.M. Ortiz de Zarate, J.V. Sengers, Phys. Rev. E 93, 012148 (2016)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    T.R. Kirkpatrick, J.M. Ortiz de Zarate, J.V. Sengers, Phys. Rev. Lett. 115, 035901 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    T.R. Kirkpatrick, J.M. Ortiz de Zarate, J.V. Sengers, Phys. Rev. Lett. 110, 235902 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    F. Croccolo, D. Brogili, A. Vailati, M. Giglio, D.S. Cannell, Ann. N.Y. Acad. Sci. 1077, 365 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    A. Oprisan, S. Oprisan, A. Teklu, Appl. Opt. 49, 86 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    F. Giavazzi, G. Savorana, A. Vailati, R. Cerbino, Soft Matter 12, 6588 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    R. Schmitz, Physica A 206, 25 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    A. Donev, E. Vanden-Eijnden, J. Chem. Phys. 140, 234115 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    C.J. Wienken, P. Baaske, U. Rothbauer, D. Braun, S. Duhr, Nat. Commun. 1, 100 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    A. Vailati, M. Giglio, Phys. Rev. E 58, 4361 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    A. Vailati, M. Giglio, Nature 390, 262 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 041112 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    D. Brogioli, A. Vailati, M. Giglio, Phys. Rev. E 61, R1 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    J.C. Legros, S. VanVaerenbergh, Y. Decroly, F. Montel, Entropie 198/199, 1 (1994)Google Scholar
  63. 63.
    S. VanVaerenbergh, S. Srinivasan, M.Z. Saghir, J. Chem. Phys. 131, 114505 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    G. Galliero, H. Bataller, J.P. Bazile, J. Diaz, F. Croccolo, H. Hoang, R. Vermorel, P.A. Artola, B. Rousseau, V. Vesovic, M. Bou-Ali, J.M.O. de Zarate, S. Xu, K. Zhang, F. Montel, A. Verga, O. Minster, Npj Micrograv. 3, 20 (2017)CrossRefGoogle Scholar
  65. 65.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    H. Kramers, J.J. Broeder, Anal. Chim. Acta 2, 687 (1948)CrossRefGoogle Scholar
  67. 67.
    M. Touzet, G. Galliero, V. Lazzeri, M.Z. Saghir, F. Montel, J.C. Legros, C. R. Mec. 339, 318 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    I. Lizarraga, F. Croccolo, H. Bataller, M.M. Bou-Ali, Eur. Phys. J. E 40, 36 (2017)CrossRefGoogle Scholar
  69. 69.
    G. Galliero, H. Bataller, F. Croccolo, R. Vermorel, P.A. Artola, B. Rousseau, V. Vesovic, M. Bou-Ali, J.M.O. de Zarate, S. Xu, K. Zhang, F. Montel, Micrograv. Sci. Technol. 28, 79 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Braibanti
    • 1
    Email author
  • P. -A. Artola
    • 2
  • P. Baaske
    • 3
  • H. Bataller
    • 4
  • J. -P. Bazile
    • 5
  • M. M. Bou-Ali
    • 6
  • D. S. Cannell
    • 7
  • M. Carpineti
    • 8
  • R. Cerbino
    • 9
  • F. Croccolo
    • 4
  • J. Diaz
    • 5
  • A. Donev
    • 10
  • A. Errarte
    • 6
  • J. M. Ezquerro
    • 11
  • A. Frutos-Pastor
    • 1
  • Q. Galand
    • 12
  • G. Galliero
    • 5
  • Y. Gaponenko
    • 12
  • L. García-Fernández
    • 4
    • 13
  • J. Gavaldá
    • 14
  • F. Giavazzi
    • 9
  • M. Giglio
    • 8
  • C. Giraudet
    • 15
  • H. Hoang
    • 16
  • E. Kufner
    • 1
  • W. Köhler
    • 17
  • E. Lapeira
    • 6
  • A. Laverón-Simavilla
    • 11
  • J. -C. Legros
    • 12
  • I. Lizarraga
    • 6
  • T. Lyubimova
    • 18
  • S. Mazzoni
    • 1
    • 8
  • N. Melville
    • 1
  • A. Mialdun
    • 12
  • O. Minster
    • 1
  • F. Montel
    • 5
  • F. J. Molster
    • 1
  • J. M. Ortiz de Zárate
    • 19
  • J. Rodríguez
    • 11
  • B. Rousseau
    • 2
  • X. Ruiz
    • 13
  • I. I. Ryzhkov
    • 20
  • M. Schraml
    • 17
  • V. Shevtsova
    • 12
  • C. J. Takacs
    • 7
  • T. Triller
    • 17
  • S. Van Vaerenbergh
    • 12
  • A. Vailati
    • 8
  • A. Verga
    • 1
  • R. Vermorel
    • 5
  • V. Vesovic
    • 21
  • V. Yasnou
    • 12
  • S. Xu
    • 22
  • D. Zapf
    • 17
  • K. Zhang
    • 23
  1. 1.European Space Agency (ESA), ESTECNoordwijkThe Netherlands
  2. 2.Laboratoire de Chimie-Physique, UMR 8000 CNRSUniversité Paris-SudOrsayFrance
  3. 3.Nanotemper Technologies GmbHMunichGermany
  4. 4.Laboratoire des Fluides Complexes et leurs Réservoirs - IPRA, UMR5150E2S-Univ Pau & Pays Adour / CNRS / TOTALAngletFrance
  5. 5.Laboratoire des Fluides Complexes et leurs Réservoirs - IPRA, UMR5150E2S-Univ Pau & Pays Adour / CNRS / TOTALPauFrance
  6. 6.MGEP Mondragon GoiEskola Politeknikoa, Mechanical and Industrial Manufacturing DepartmentMondragonSpain
  7. 7.Department of PhysicsUniversity of California at Santa BarbaraSanta BarbaraUSA
  8. 8.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly
  9. 9.Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoSegrateItaly
  10. 10.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  11. 11.E-USOC. ETSIAEUniversidad Politécnica de MadridMadridSpain
  12. 12.MRCUniversité libre de BruxellesBrusselsBelgium
  13. 13.Centre National d’Etudes Spatiales (CNES)ParisFrance
  14. 14.Departament de Química Física i InòrganicaUniversitat Rovira i VirgiliTarragonaSpain
  15. 15.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  16. 16.Institute of Fundamental and Applied SciencesDuy Tan UniversityHo Chi Minh CityVietnam
  17. 17.Physikalisches InstitutUniversität BayreuthBayreuthGermany
  18. 18.Institute of Continuous Media Mechanics UB RASPermRussia
  19. 19.Departamento de Estructura de la MateriaFacultad de Fisica, Universidad ComplutenseMadridSpain
  20. 20.Institute of Computational Modelling SB RASAkademgorodok, KrasnoyarskRussia
  21. 21.Department of Earth Science and EngineeringImperial College LondonLondonUK
  22. 22.Key Laboratory of MicrogravityInstitute of Mechanics, Chinese Academy of ScienceBeijingChina
  23. 23.State Key Laboratory of Enhanced Oil Recovery (Research Institute of Petroleum Exploration & Development), CNPCBeijingChina

Personalised recommendations