Advertisement

Structural and optical properties of free-standing smectic films

  • Izabela Sliwa
  • A. V. ZakharovEmail author
Regular Article
  • 18 Downloads

Abstract.

We have carried out a complex numerical study of the structural, thermodynamic and optical properties of the partially fluorinated 5-n -alkyl-2-(4-n-(perfluoroalkyl-metheleneoxy)phenyl) free-standing smectic film in air under the action of the external electric field \(\mathbf{E}\). Calculations, based upon the extended McMillan’s mean-field theory with anisotropic forces, show a stepwise reduction of the value of the Helmholtz free energy and the reflectivity of the partially fluorinated smectic film in air, as the temperature is raised above the bulk smectic-A-isotropic transition value. It has been shown, by solving the self-consistent nonlinear equations for the orientational and translational order parameters, that the electric field \(\mathbf{E}\) may not only affect the layer-thinning transition sequences, but also change the first multilayer jump in the film thickness, whereas practically does not affect the reflectivity R(N) of the partially fluorinated N -layer smectic film in air. In the range of film thicknesses investigated, the reduction of the R(N) is, at least, qualitatively in agreement with the experimentally observed decrease of the optical reflectivity with the decrease of N.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    T. Stoebe, P. Mach, C.C. Huang, Phys. Rev. Lett. 73, 1384 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    E.I. Demikhov, V.K. Dolganov, K.P. Meletov, Phys. Rev. E 52, R1285 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    A.V. Zakharov, D.E. Sullivan, Phys. Rev. E 82, 041704 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M. Veum, E. Kutschera, N. Voshell, S.T. Wang, S.L. Wang, H.T. Nguyen, C.C. Huang, Phys. Rev. E 71, 020701(R) (2005)ADSCrossRefGoogle Scholar
  5. 5.
    A.V. Zakharov, A.A. Vakulenko, Phys. Rev. E 86, 031701 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    P. Mach, P.M. Johnson, E.D. Wedell, F. Lintgen, C.C. Huang, Europhys. Lett. 40, 399 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    A.V. Zakharov, I. Sliwa, J. Chem. Phys. 140, 124705 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    V.K. Dolganov, E.I. Demikhov, R. Fouret, C. Gors, Phys. Lett. A 220, 242 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Jin, M. Veum, T. Stoebe et al., Phys. Rev. E 53, 3639 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    W.L. McMillan, Phys. Rev. A 4, 1238 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1975)Google Scholar
  12. 12.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)Google Scholar
  13. 13.
    A.V. Zakharov, I. Sliwa, J. Chem. Phys. 142, 214703 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    I. Sliwa et al., J. Chem. Phys. 145, 084905 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Poznan University of Economics and Business, Department of Mathematical EconomicsPoznanPoland
  2. 2.Saint Petersburg Institute for Machine SciencesThe Russian Academy of SciencesSaint PetersburgRussia

Personalised recommendations