A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters

  • Haiyan Wang
  • John J. KasianowiczEmail author
  • Joseph W. F. Robertson
  • Dianne L. Poster
  • Jessica Ettedgui
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)


Proteinaceous nanometer-scale pores have been used to detect and physically characterize many different types of analytes at the single-molecule limit. The method is based on the ability to measure the transient reduction in the ionic channel conductance caused by molecules that partition into the pore. The distribution of blockade depth amplitudes and residence times of the analytes in the pore are used to physically and chemically characterize them. Here we compare the current blockade events caused by flexible linear polymers of ethylene glycol (PEGs) and structurally well-defined tungsten polyoxymetallate nanoparticles in the nanopores formed by Staphylococcus aureus\( \alpha\)-hemolysin and Aeromonas hydrophila aerolysin. Surprisingly, the variance in the ionic current blockade depth values for the relatively rigid metallic nanoparticles is much greater than that for the flexible PEGs, possibly because of multiple charged states of the polyoxymetallate clusters.

Graphical abstract


Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 


  1. 1.
    B. Katz, Nerve, Muscle, and Synapse (New York, McGraw-Hill, 1966)Google Scholar
  2. 2.
    B. Hille, Ion Channels of Excitable Membranes, 3rd ed. (Sunderland, MA, 2001)Google Scholar
  3. 3.
    A.L. Harris, Q. Rev. Biophys. 34, 325 (2002)CrossRefGoogle Scholar
  4. 4.
    J.J. Kasianowicz, J.W.F. Robertson, E.R. Chan, J.E. Reiner, V.M. Stanford, Annu. Rev. Anal. Chem. 1, 737 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Bezrukov, J.J. Kasianowicz, Phys. Rev. Lett. 70, 2352 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Kasianowicz, S.M. Bezrukov, Biophys. J. 69, 94 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Kasianowicz, D.L. Burden, L.C. Han, S. Cheley, H. Bayley, Biophys. J. 76, 837 (1999)CrossRefGoogle Scholar
  8. 8.
    J.J. Kasianowicz, E. Brandin, D. Branton, D. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    M. Akeson, D. Branton, J.J. Kasianowicz, E. Brandin, D. Deamer, Biophys. J. 77, 3227 (1999)CrossRefGoogle Scholar
  10. 10.
    O.V. Krasilnikov, R.Z. Sabirov, V.I. Ternovsky, P.G. Merzliak, J.N. Muratkhodjaev, FEMS Microbiol. Immun. 105, 93 (1992)CrossRefGoogle Scholar
  11. 11.
    S.M. Bezrukov, I. Vodyanoy, R. Brutyan, J.J. Kasianowicz, Macromolecules 29, 8517 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    L. Movileanu, H. Bayley, Proc. Natl. Acad. Sci. U.S.A. 98, 10137 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    O.V. Krasilnikov, Sizing Channels with Neutral Polymers, in Structure and Dynamics of confined polymers, NATO Sci. Ser., Vol. 87 (Springer Netherlands, Dordrecht, 2002) pp. 97--115Google Scholar
  14. 14.
    J.W.F. Robertson, C.G. Rodrigues, V.M. Stanford, K.A. Rubinson, O.V. Krasilnikov, J.J. Kasianowicz, Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.E. Reiner, J.J. Kasianowicz, B.J. Nablo, J.W.F. Robertson, Proc. Natl. Acad. Sci. U.S.A. 107, 12080 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G. Baaken, N. Ankri, A.-K. Schuler, J. Rühe, J.C. Behrends, ACS Nano 5, 8080 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Oukhaled, B. Cressiot, L. Bacri, M. Pastoriza-Gallego, J.-M. Betton, E. Bourhis, R. Jede, J. Gierak, L. Auvray, J. Pelta, ACS Nano 5, 3628 (2011)CrossRefGoogle Scholar
  18. 18.
    E.A. Manrao, I.M. Derrington, A.H. Laszlo, K.W. Langford, M.K. Hopper, N. Gillgren, M. Pavlenok, M. Niederweis, J.H. Gundlach, Nat. Biotechnol. 30, 349 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, C. Tao, M. Chien, B. Hellner, A. Balijepalli, J.W.F. Robertson, Z. Li, J.J. Russo, J.E. Reiner, J.J. Kasianowicz, J. Ju, Sci. Rep. 2, 684 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    C.W. Fuller, S. Kumar, M. Porel, M. Chien, A. Bibillo, P.B. Stranges, M. Dorwart, C. Tao, Z. Li, W. Guo, S. Shi, D. Korenblum, A. Trans, A. Aguirre, E. Liu, E.T. Harada, J. Pollard, A. Bhat, C. Cech, A. Yang, C. Arnold, M. Palla, J. Hovis, R. Chen, I. Morozova, S. Kalachikov, J.J. Russo, J.J. Kasianowicz, R. Davis, S. Roever, G.M. Church, J. Ju, Proc. Natl. Acad. Sci. U.S.A. 113, 5233 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S.E. Henrickson, E. DiMarzio, Q. Wang, V.M. Stanford, J.J. Kasianowicz, J. Chem. Phys. 132, 135101 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    J.J. Kasianowicz, S.E. Henrickson, H.H. Weetall, B. Robertson, Anal. Chem. 73, 2268 (2001)CrossRefGoogle Scholar
  23. 23.
    W. Vercoutere, S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, M. Akeson, Nat. Biotechnol. 19, 248 (2001)CrossRefGoogle Scholar
  24. 24.
    O.K. Dudko, J. Mathe, A. Szabo, A. Meller, G. Hummer, Biophys. J. 92, 4188 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    J.J. Kasianowicz, J.E. Reiner, J.W.F. Robertson, S.E. Henrickson, C. Rodrigues, O.V. Krasilnikov, Detecting and characterizing individual molecules with single nanopores, in Nanopore-Based Technology, Methods in Molecular Biology, edited by M. Gracheva, Vol. 870 (Totowa, NJ: Humana Press, 2012) pp. 3--20Google Scholar
  26. 26.
    M. Pope, Heteropoly and Isopoly Oxometalates (Springer, 2013)Google Scholar
  27. 27.
    A. Bijelic, A. Rompel, Coord. Chem. Rev. 299, 22 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Ettedgui, J.J. Kasianowicz, A. Balijepalli, J. Am. Chem. Soc. 138, 7228 (2016)CrossRefGoogle Scholar
  29. 29.
    H.S. White, A. Bund, Langmuir 24, 2212 (2008)CrossRefGoogle Scholar
  30. 30.
    S.P. Howard, W.J. Garland, M.J. Green, J.T. Buckley, J. Bacteriol. 169, 2869 (1987)CrossRefGoogle Scholar
  31. 31.
    J.T. Buckley, S.P. Howard, Methods Enzymol. 165, 193 (1988)CrossRefGoogle Scholar
  32. 32.
    J.T. Buckley, S.P. Howard, Infect. Immun. 67, 466 (1999)Google Scholar
  33. 33.
    M.W. Parker, J.T. Buckley, J.P. Postma, A.D. Tucker, K. Leonard, F. Pattus, D. Tsernoglou, Nature 367, 292 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. del Rio Martinez, E. Zaitseva, S. Petersen, G. Baaken, J.C. Behrends, Small 11, 119 (2015)CrossRefGoogle Scholar
  35. 35.
    C.G. Rodrigues, D.C. Machado, S.F. Chevtchenko, O.V. Krasilnikov, Biophys. J. 95, 5186 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A. Balijepalli, J.W.F. Robertson, J.E. Reiner, J.J. Kasianowicz, R.W. Pastor, J. Am. Chem. Soc. 135, 7064 (2013)CrossRefGoogle Scholar
  37. 37.
    A. Balijepalli, J. Ettedgui, A.T. Cornio, J.W.F. Robertson, K.P. Cheung, J.J. Kasianowicz, C. Vaz, ACS Nano 8, 1547 (2014)CrossRefGoogle Scholar
  38. 38.
    W. Junge, S. McLaughlin, Biochim. Biophys. Acta 890, 1 (1987)CrossRefGoogle Scholar
  39. 39.
    W.H. Knoth, R.L. Harlow, J. Am. Chem. Soc. 103, 1865 (1981)CrossRefGoogle Scholar
  40. 40.
    M.A. Fedotov, R.I. Maksimovskaya, J. Struct. Chem. 47, 952 (2006)CrossRefGoogle Scholar
  41. 41.
    E.C. Yusko, J.M. Johnson, S. Majd, P. Prangkio, R.C. Rollings, J. Li, J. Yang, M. Mayer, Nat. Nanotechnol. 6, 253 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    H. Wang, J. Ettedgui, J. Forstater, J.W.F. Robertson, J.E. Reiner, H. Zhang, S. Chen, J.J. Kasianowicz, ACS Sens. 3, 251 (2018)CrossRefGoogle Scholar
  43. 43.
    R. Stefureac, Y.-T. Long, H.-B. Kraatz, P. Howard, J.S. Lee, Biochemistry 45, 9172 (2006)CrossRefGoogle Scholar
  44. 44.
    Y. Wang, V. Montana, V. Grubišić, R.F. Stout, V. Parpura, L.-Q. Gu, ACS Appl. Mater. Interfaces 7, 184 (2015)CrossRefGoogle Scholar
  45. 45.
    F. Piguet, H. Ouldali, M. Pastoriza-Gallego, P. Manivet, J. Pelta, A. Oukhaled, Nat. Commun. 9, 966 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    L. Bacri, A. Oukhaled, E. Hémon, F.B. Bassafoula, L. Auvray, R. Daniel, Biochem. Biophys. Res. Commun. 412, 561 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Fennouri, C. Przybylski, M. Pastoriza-Gallego, L. Bacri, L. Auvray, R. Daniel, ACS Nano 6, 9672 (2012)CrossRefGoogle Scholar
  48. 48.
    M. Pastoriza-Gallego, L. Rabah, G. Gibrat, B. Thiebot, F.G. van der Goot, L. Auvray, J.-M. Betton, J. Pelta, J. Am. Chem. Soc. 133, 2923 (2011)CrossRefGoogle Scholar
  49. 49.
    C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J.-M. Betton, L. Auvray, J. Pelta, ACS Chem. Biol. 7, 652 (2012)CrossRefGoogle Scholar
  50. 50.
    L. Payet, M. Martinho, M. Pastoriza-Gallego, J.-M. Betton, L. Auvray, J. Pelta, J. Mathe, Anal. Chem. 84, 4071 (2012)CrossRefGoogle Scholar
  51. 51.
    M. Pastoriza-Gallego, M.-F. Breton, F. Discala, L. Auvray, J.-M. Betton, J. Pelta, ACS Nano 8, 11350 (2014)CrossRefGoogle Scholar
  52. 52.
    G. Baaken, I. Halimeh, L. Bacri, J. Pelta, A. Oukhaled, J.C. Behrends, ACS Nano 9, 6443 (2015)CrossRefGoogle Scholar
  53. 53.
    C. Cao, Y.-L. Ying, Z.-L. Hu, D.-F. Liao, H. Tian, Y.-T. Long, Nat. Nanotechnol. 11, 713 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haiyan Wang
    • 1
    • 2
  • John J. Kasianowicz
    • 1
    • 3
    Email author
  • Joseph W. F. Robertson
    • 1
  • Dianne L. Poster
    • 4
  • Jessica Ettedgui
    • 1
    • 5
  1. 1.National Institute of Standards and Technology, Physical Measurement LaboratoryGaithersburgUSA
  2. 2.Shenzhen Key Laboratory of Biomedical Engineering, School of MedicineShenzhen UniversityShenzhenChina
  3. 3.Columbia University, Department of Applied Physics Applied MathematicsNew YorkUSA
  4. 4.National Institute of Standards and Technology, Material Measurement LaboratoryGaithersburgUSA
  5. 5.Columbia University, Department of Chemical EngineeringNew YorkUSA

Personalised recommendations