Study on the structure and behaviour of cavitation bubbles generated in a high-intensity focused ultrasound (HIFU) field

  • N. -N. Liu
  • B. -C. Khoo
  • A. -M. ZhangEmail author
Regular Article


In this study, structures and behaviours of acoustic cavitation bubbles induced by a high-intensity focused ultrasound (HIFU) transducer, operating at its resonance frequency of 250kHz, are experimentally explored with corresponding observations captured by a high-speed video camera system. The experiments were conducted in an open-top Perspex water tank with deionized water, and illumination was provided by a LED spotlight which is placed beside the water tank throughout the whole experiment. Experimental results show that the structure of ultrasonically generated bubbles forms in a conical shape with several concentric bubble rings above the transducer. The distance between the adjacent rings with equal spacing as determined by the driving frequency of the HIFU transducer is experimentally measured and compared with the theoretical value. Then, the distribution of acoustic pressure in the acoustically driven liquid is further studied to investigate the behaviours of cavitation bubbles generated in a HIFU field. Additionally, the analysis of Bjerknes forces on the bubble surface which are induced by the gradient of acoustic pressure and the adjacent oscillating bubbles is quantitatively carried out, and the radius and velocity of a typical larger bubble are measured to characterize the behaviours of ultrasonically induced bubbles. Particularly, the physical phenomena of large bubbles including the coalescence, attraction or repulsion between adjacent bubbles, as well as the jumping of an acoustic bubble from the lower concentric ring level to the higher level, are analysed. The moving trajectory of the bubble is next obtained, and some conclusions are summarized to provide a greater understanding of the complex behaviours of the ultrasonically generated bubbles.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    B. Carlin, The use of high- and low-amplitude ultrasonic waves for inspection and processing, in Cumulative Subject and Author Index, Including Tables of Contents, Physical Acoustics, Vol. XXV, edited by R.N. Thurston, Allan D. Pierce (Academic Press, 1999) p. 228Google Scholar
  2. 2.
    C. Chaussy, E. Schmiedt, B. Jocham, W. Brendel, B. Forssmann, V. Walther, J. Urol. 127, 417 (1982)CrossRefGoogle Scholar
  3. 3.
    D.L. Sokolov, M.R. Bailey, L.A. Crum, J. Acoust. Soc. Am. 110, 1685 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Xu, A. Ludomirsky, L.Y. Eun, T.L. Hall, B.C. Tran, J.B. Fowlkes, C.A. Cain, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 726 (2004)CrossRefGoogle Scholar
  5. 5.
    R. Mettin, I. Akhatov, U. Parlitz, C.D. Ohl, W. Lauterborn, Phys. Rev. E 56, 2924 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    D.L. Miller, J. Acoust. Soc. Am. 62, 12 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    T. Leighton, Ultrason. Sonochem. 2, S123 (1995)CrossRefGoogle Scholar
  8. 8.
    L. Chen, G. ter Haar, C. Hill, M. Dworkin, P. Carnochan, H. Young, J. Bensted, Phys. Med. Biol. 38, 1661 (1993)CrossRefGoogle Scholar
  9. 9.
    H. Chen, X.J. Li, M.X. Wan, Ultrason. Sonochem. 13, 480 (2006)CrossRefGoogle Scholar
  10. 10.
    N.N. Liu, Y.D. Cui, B.C. Khoo, A.M. Zhang, AIP Adv. 8, 115123 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    S. Quinto, A. Pedro, C.D. Ohl, J. Fluid Mech. 633, 425 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A.H. Aghdam, V. Farhangmehr, S.W. Ohl, B.C. Khoo, M.T. Shervani-Tabar, Exp. Fluids 53, 1723 (2012)CrossRefGoogle Scholar
  13. 13.
    J.R. Blake, P.B. Robinson, A. Shima, Y. Tomita, J. Fluid Mech. 255, 707 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    S. Zhang, J.H. Duncan, G.L. Chahine, J. Fluid Mech. 257, 147 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    S.P. Wang, Q.X. Wang, D.M. Leppinen, A.M. Zhang, Y.L. Liu, Phys. Fluids 30, 012104 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    S.W. Fong, D. Adhikari, E. Klaseboer, B.C. Khoo, Exp. Fluids 46, 705 (2009)CrossRefGoogle Scholar
  17. 17.
    N.N. Liu, W.B. Wu, A.M. Zhang, Y.L. Liu, Phys. Fluids 29, 107102 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Zhang, P. Cui, Y. Wang, Exp. Fluids 54, 1602 (2013)CrossRefGoogle Scholar
  19. 19.
    L.T. Liu, X.L. Yao, A.M. Zhang, Y.Y. Chen, Phys. Fluids 29, 012105 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A. Dadvand, B.C. Khoo, M.T. Shervani-Tabar, Exp. Fluids 46, 419 (2009)CrossRefGoogle Scholar
  21. 21.
    S.P. Wang, A.M. Zhang, Y.L. Liu, D.R. Zeng, Eur. Phys. J. E 36, 119 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    P. Cui, A.M. Zhang, S. Wang, B.C. Khoo, J. Fluid Mech. 841, 287 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Zhang, P. Cui, J. Cui, Q. Wang, J. Fluid Mech. 776, 137 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S. Li, A.-M. Zhang, S. Wang, R. Han, Phys. Fluids 30, 082111 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    N.N. Liu, P. Cui, S.F. Ren, A.M. Zhang, Phys. Fluids 29, 052104 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    G. Chahine, G. Frederick, C. Lambrecht, G. Harris, H. Mair, Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools, in SAVIAC: Proceedings of the 66th Shock and Vibration Symposium, October 30 - November 3, 1995, Biloxi, MS, Vol. 2 (Shock & Vibration Information Analysis Center, 1995) pp. 265--276Google Scholar
  27. 27.
    E. Klaseboer, K.C. Hung, C. Wang, C.W. Wang, B.C. Khoo, P. Boyce, S. Debono, H. Charlier, J. Fluid Mech. 537, 387 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    C.F. Hung, J.J. Hwangfu, J. Fluid Mech. 651, 55 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Zhang, S.P. Wang, C. Huang, B. Wang, Eur. J. Mech. B/Fluids 42, 69 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    T. Li, S.P. Wang, S. Li, A.M. Zhang, Appl. Ocean Res. 74, 49 (2018)CrossRefGoogle Scholar
  31. 31.
    A.M. Zhang, W.-S. Yang, C. Huang, F.-R. Ming, Comput. Fluids 71, 169 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Mettin, S. Luther, C.-D. Ohl, W. Lauterborn, Ultrason. Sonochem. 6, 25 (1999)CrossRefGoogle Scholar
  33. 33.
    R. Mettin, From a single bubble to bubble structures in acoustic cavitation, in Oscillations, Waves and Interactions, edited by T. Kurz (Universitätsverlag Göttingen, 2007) pp. 171--198Google Scholar
  34. 34.
    A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, A. Lippert, Ultrason. Sonochem. 18, 595 (2011)CrossRefGoogle Scholar
  35. 35.
    S.-P. Wang, A.-M. Zhang, Y.-L. Liu, S. Zhang, P. Cui, J. Hydrodyn. 30, 975 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    S. Li, S. Tan, C. Xu, P. Gao, L. Sun, Int. J. Heat Mass Transfer 57, 89 (2013)CrossRefGoogle Scholar
  37. 37.
    C.E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, 1995)Google Scholar
  38. 38.
    R. Mettin, Bubble Structures in Acoustic Cavitation, in Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, edited by A.A. Doinikov (Research Signpost, Kerala, India, 2005) pp. 1--36, ISBN 81-7736-284-4Google Scholar
  39. 39.
    C. Devin jr., J. Acoust. Soc. Am. 31, 1654 (1959)ADSCrossRefGoogle Scholar
  40. 40.
    T.G. Leighton, A.J. Walton, M.J.W. Pickworth, Eur. J. Phys. 11, 47 (1990)CrossRefGoogle Scholar
  41. 41.
    T. Leighton, The Acoustic Bubble (Academic Press, 1997)Google Scholar
  42. 42.
    N.A. Pelekasis, A. Gaki, A. Doinikov, J.A. Tsamopoulos, J. Fluid Mech. 500, 313 (2004)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    O.M.F.R.S. Lord Rayleigh, London Edinb. Dublin Philos. Mag. J. Sci. 34, 94 (1917)CrossRefGoogle Scholar
  44. 44.
    W. Lauterborn, T. Kurz, Rep. Prog. Phys. 73, 106501 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, 1968)Google Scholar
  46. 46.
    L.A. Crum, J. Acoust. Soc. Am. 57, 1363 (1974)ADSCrossRefGoogle Scholar
  47. 47.
    R. Manica, E. Klaseboer, D.Y. Chan, Langmuir 31, 6763 (2015)CrossRefGoogle Scholar
  48. 48.
    S.W. Ohl, E. Klaseboer, B.C. Khoo, Interface Focus 5, 20150019 (2015)CrossRefGoogle Scholar
  49. 49.
    M. Greenspan, C.E. Tschiegg, J. Res. Natl. Bur. Stand. 59, 249 (1957)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Shipbuilding EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations