Advertisement

Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels

  • Sudipta PattanayakEmail author
  • Rakesh Das
  • Manoranjan Kumar
  • Shradha Mishra
Regular Article
  • 113 Downloads

Abstract.

We study the motion of an active Brownian particle (ABP) using the overdamped Langevin dynamics on a two-dimensional substrate with periodic array of obstacles and in a quasi-one-dimensional corrugated channel comprised of periodically arrayed obstacles. The periodic arrangement of the obstacles enhances the persistent motion of the ABP in comparison to its motion in the free space. Persistent motion increases with the activity of the ABP. We note that the periodic arrangement induces directionality in ABP motion at late time, and it increases with the size of the obstacles. We also note that the ABP exhibits a super-diffusive dynamics in the corrugated channel. The transport property is independent of the shape of the channel; rather it depends on the packing fraction of the obstacles in the system. However, the ABP shows the usual diffusive dynamics in the quasi-one-dimensional channel with flat boundary.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, Madan Rao, R. Aditi Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Bechinger et al., Rev. Mod. Phys. 88, 045006 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Vicsek, A Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Chaté, F. Ginelli, G. Grégoire, Phys. Rev. Lett. 99, 229601 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D.A. Quint, A. Gopinathan, Phys. Biol. 12, 046008 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A. Morin, N. Desreumaux, J.B. Caussin, D. Bartolo, Nat. Phys. 13, 63 (2017)CrossRefGoogle Scholar
  12. 12.
    O. Chepizhko, E.G. Altmann, F. Peruani, Phys. Rev. Lett. 110, 238101 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    R. Das, M. Kumar, S. Mishra, Phys. Rev. E 98, 060602(R) (2018)ADSCrossRefGoogle Scholar
  14. 14.
    J. Toner, N. Guttenberg, Y. Tu, Phys. Rev. Lett. 121, 248002 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J. Toner, N. Guttenberg, Y. Tu, Phys. Rev. E 98, 062604 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    O. Chepizhko, F. Peruani, Phys. Rev. Lett. 111, 160604 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    F. Peruani, I.S. Aranson, Phys. Rev. Lett. 120, 238101 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Cs. Sándor, A. Libál, C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E 95, 032606 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Cs. Sándor, A. Libál, C. Reichhardt, C.J. Olson Reichhardt, J. Chem. Phys. 146, 204903 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Tailleur, M.E. Cates, Phys. Rev. Lett. 100, 218103 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M.E. Cates, J. Tailleur, Europhys. Lett. 101, 2 (2013)CrossRefGoogle Scholar
  24. 24.
    Cs. Sándor, A. Libál, C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E 95, 012607 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. E 97, 052613 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    M. Zeitz, K. Wolff, H. Stark, Eur. Phys. J. E 40, 23 (2017)CrossRefGoogle Scholar
  27. 27.
    T. Chinnasamy, J.L. Kingsley, F. Inci, P.J. Turek, M.P. Rosen, B. Behr, E. Tüzel, U. Demirci, Adv. Sci. 5, 1700531 (2018)CrossRefGoogle Scholar
  28. 28.
    U. Choudhury, A.V. Straube, P. Fischer, J.G. Gibbs, F. Höfling, New J. Phys. 19, 125010 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mishra, S. Pattanayak, Physica A: Stat. Mech. Appl. 477, 128 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    S. Dey, K. Ching, M. Das, J. Chem. Phys. 148, 134907 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    P. Malgaretti, H. Stark, J. Chem. Phys. 146, 174901 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Bao-quan Ai, Qiu-yan Chen, Ya-feng He, Feng-guo Li, Wei-rong Zhong, Phys. Rev. E 88, 062129 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Xiao-Lun Wu, A. Libchaber, Phys. Rev. Lett. 84, 13 (2000)Google Scholar
  34. 34.
    A.E. Patteson, A. Gopinath, P.K. Purohit, P.E. Arratia, Soft Matter 12, 2365 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A. Baskaran, M.C. Marchetti, Phys. Rev. Lett. 101, 268101 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sudipta Pattanayak
    • 1
    Email author
  • Rakesh Das
    • 1
  • Manoranjan Kumar
    • 1
  • Shradha Mishra
    • 2
  1. 1.S.N. Bose National Centre for Basic SciencesJ D Block, Sector IIISalt Lake City, KolkataIndia
  2. 2.Department of PhysicsIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations