Elemental and isotopic fractionation of noble gases in gas and oil under reservoir conditions: Impact of thermodiffusion

  • Hai Hoang
  • Phuc Nguyen
  • Magali Pujol
  • Guillaume GallieroEmail author
Regular Article
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter


Noble gases, and the way they fractionate, is a promising approach to better constrain origin, migration and initial state distributions of fluids in gas and oil reservoirs. Thermodiffusion, is one of the phenomena that may lead to isotope and elemental fractionation of noble gases. However, this effect, assumed to be small, has not been quantified, nor measured, in oil and gas under reservoir conditions. Thus, in this work, molecular dynamics simulations have been performed to compute the thermal diffusion factors of noble gases, in a dense gas (methane) and in an oil (n-hexane) under high pressures. Interestingly, it has been found that thermal diffusion factors, associated to both isotopic (36Ar, 40Ar) and elemental fractionations of noble gases (4He, 20Ne, 40Ar, 84Kr and 131Xe) in gas and oil, could be expressed as linear functions of the reduced masses. Regarding the amplitude of the phenomena, it has been found that, in a stationary 1D oil or gas fluid column, thermodiffusion due to a typical geothermal gradient has an impact on noble gas isotopic and elemental fractionation which is of the same order of magnitude than gravity segregation, but opposite in sign. In addition, the relative impact of thermodiffusion on isotopic and elemental fractionations depends on the fluid type which is another interesting feature. Thus, these first numerical results on isotopic and elemental fractionation of noble gases by thermodiffusion in simple pure gas and oil emphasize their interest as natural tracers that could be used to improve the pre-exploitation description of oil and gas reservoirs.

Graphical abstract


Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 


  1. 1.
    M. Ozima, F. Podosek, Noble Gas Geochemistry (Cambridge University Press, 2002)Google Scholar
  2. 2.
    C.J. Ballentine, R. Burgess, B. Marty, Rev. Mineral. Geochem. 47, 539 (2002)CrossRefGoogle Scholar
  3. 3.
    P. Burnard, The Noble Gases as Geochemical Tracers (Springer, 2013)Google Scholar
  4. 4.
    B. Marty, Geochem. J. 18, 157 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    J.W. Gibbs, Collected Works, Vol. 1: Thermodynamics (Yale University Press, New Haven, 1957)Google Scholar
  6. 6.
    G. Galliero, F. Montel, Phys. Rev. E 78, 041203 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Galliero, H. Bataller, F. Croccolo, R. Vermorel, P.A. Artola, B. Rousseau, V. Vesovic, M. Bou-Ali, J.M.O. de Zarate, S. Xu, K. Zhang, F. Montel, Microgravity Sci. Technol. 28, 79 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    B.H. Sage, W.N. Lacey, Trans. AIME 132, 120 (1939)CrossRefGoogle Scholar
  9. 9.
    L. Høier, C.H. Whitson, SPE Reserv. Eval. Eng. 4, 525 (2001)CrossRefGoogle Scholar
  10. 10.
    T. Holt, E. Lindeberg, K.S. Ratkje, SPE Paper 11761 (1983)Google Scholar
  11. 11.
    C.H. Whitson, P. Belery, SPE Paper 28000 (1994)Google Scholar
  12. 12.
    F. Montel, J. Bickert, A. Lagisquet, G. Galliero, J. Pet. Sci. Eng. 58, 391 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1981)Google Scholar
  14. 14.
    G. Galliero, M. Bugel, B. Duguay, F. Montel, J. Non-Equilib. Thermodyn. 32, 251 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004)ADSGoogle Scholar
  16. 16.
    S. Srinivasan, M.Z. Saghir, Thermodiffusion in Multicomponent Mixtures: Thermodynamic, Algebraic, and Neuro-Computing Models (Springer Science & Business Media, 2012)Google Scholar
  17. 17.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    P. Ungerer, B. Tavitian, A. Boutin, Applications of Molecular Simulation in the Oil and Gas Industry (Technip, 2005)Google Scholar
  19. 19.
    M. Zhang, F. Müller-Plathe, J. Chem. Phys. 125, 124903 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Assael, J.M.P. Trusler, T.F. Tsolakis, Thermophysical Properties of Fluids. An Introduction to their Prediction (Imperial College Press, 1996)Google Scholar
  21. 21.
    A. Mejia, C. Herdes, E.A. Müller, Ind. Eng. Chem. Res. 53, 4131 (2014)CrossRefGoogle Scholar
  22. 22.
    E.A. Müller, G. Jackson, Annu. Rev. Chem. Biomol. Eng. 5, 405 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Hoang, S. Delage-Santacreu, G. Galliero, Ind. Eng. Chem. Res. 56, 9213 (2017)CrossRefGoogle Scholar
  24. 24.
    R.D. Gunn, P.L. Chueh, J.M. Prausnitz, AIChE J. 12, 937 (1966)CrossRefGoogle Scholar
  25. 25.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)Google Scholar
  26. 26.
    P.A. Artola, B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    G. Galliero, S. Srinivasan, M.Z. Saghir, High Temp.-High Press. 38, 315 (2008)Google Scholar
  28. 28.
    T. Schnabel, J. Vrabec, H. Hasse, J. Mol. Liq. 135, 170 (2007)CrossRefGoogle Scholar
  29. 29.
    A.J. Haslam, A. Galindo, G. Jackson, Fluid Phase Equilib. 266, 105 (2008)CrossRefGoogle Scholar
  30. 30.
    J.R. Mick, M.S. Barhaghi, B. Jackman, K. Rushaidat, L. Schwiebert, J.J. Potoff, J. Chem. Phys. 143, 114504 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    K.S. Shing, K.E. Gubbins, K. Lucas, Mol. Phys. 65, 1235 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    A.Z. Panagiotopoulos, N. Quirke, M. Stapleton, D.J. Tildesley, Mol. Phys. 63, 527 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    B. Widom, J. Chem. Phys. 39, 2808 (1963)ADSCrossRefGoogle Scholar
  35. 35.
    B. Widom, J. Phys. Chem. 86, 869 (1982)CrossRefGoogle Scholar
  36. 36.
    R.P.M.F. Bonifácio, M.F.C. Gomes, E.J.M. Filipe, Fluid Phase Equilib. 193, 41 (2002)CrossRefGoogle Scholar
  37. 37.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987)Google Scholar
  38. 38.
    H.C. Andersen, J. Comput. Phys. 52, 24 (1983)ADSCrossRefGoogle Scholar
  39. 39.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSCrossRefGoogle Scholar
  40. 40.
    F. Müller-Plathe, D. Reith, Comput. Theor. Polym. Sci. 9, 203 (1999)CrossRefGoogle Scholar
  41. 41.
    L.S. Darken, Diffusion, Trans. AIME 1975, 184 (1948)Google Scholar
  42. 42.
    J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (John Wiley & Sons, Inc., New York, 1992)Google Scholar
  43. 43.
    J.J. Ross, A literature survey of noble gas solubility measurements in formation brines to interpret tracer experiments, Bachelor’s Thesis, Ohio State University (2018)Google Scholar
  44. 44.
    G. Galliero, S. Volz, J. Chem. Phys. 128, 064505 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    M. Yang, M. Ripoll, J. Phys.: Condens. Matter 24, 195101 (2012)ADSGoogle Scholar
  46. 46.
    G. Galliero, B. Duguay, J.P. Caltagirone, F. Montel, Fluid Phase Equilib. 208, 171 (2003)CrossRefGoogle Scholar
  47. 47.
    C. Debuschewitz, W. Köhler, Phys. Rev. Lett. 87, 055901 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, REFPROP Version 8.0 (2007)Google Scholar
  49. 49.
    D.A. de Mezquia, M.M. Bou-Ali, J.A. Madariaga, C. Santamaría, J. Chem. Phys. 140, 084503 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    I.C. Bourg, G. Sposito, Geochim. Cosmochim. Acta 72, 2237 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Milzetti, D. Nayar, N.F.A. van der Vegt, J. Phys. Chem. B 122, 5515 (2018)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hai Hoang
    • 1
  • Phuc Nguyen
    • 2
  • Magali Pujol
    • 3
  • Guillaume Galliero
    • 4
    Email author
  1. 1.Institute of Fundamental and Applied SciencesDuy Tan UniversityHo Chi Minh CityVietnam
  2. 2.Ho Chi Minh University of ScienceHo Chi Minh CityVietnam
  3. 3.TOTAL S.A., CSTJFPauFrance
  4. 4.Laboratoire des Fluides Complexes et leurs Réservoirs (UMR-5150 with CNRS, and TOTAL)Université de Pau et des Pays de l’AdourPau CedexFrance

Personalised recommendations