Advertisement

Hydrogen isotope replacement changes hydration and large scale structure, but not small scale structure, of agarose hydrogel networks

  • Tom BrennerEmail author
  • Rando Tuvikene
  • Yiping Cao
  • Yapeng Fang
  • Masahiro Rikukawa
  • William S. Price
  • Shingo Matsukawa
Regular Article
  • 30 Downloads

Abstract.

Agarose samples of low (Ag1) and high (Ag2) O -methyl content on position 6 of the galactose residue were studied in H2O and D2O. Differential scanning calorimetry, turbidity and rheological measurements showed a \( \approx\) 2 ° C shift in the coil-to-helix transition temperature, indicating higher helix stability in D2O. The differential scanning calorimetry data could be superimposed using a temperature shift factor, suggesting similar extents of helix aggregation in both solvents. Small angle X-ray scattering of H2O and D2O gels were essentially identical, indicating no change in the small scale ( \( \approx\) 0.05-20 nm) network structure on isotopic exchange. Larger (\( \approx\) 1 μm) scale heterogeneities were more pronounced in deuterium gels. The 1HT2 relaxation times were measured at different H/D ratios. These relaxation times were analyzed using a model assuming regular solution mixing of H2O, HDO and D2O between the solvent and gel phases. The fit results suggested that H2O has higher affinity for the agarose network than HDO and D2O. The difference, however, was much larger for the Ag2 sample. This finding implies that the higher hydrophobic effect observed in D2O affects the hydration state much more strongly for the more hydrophobic (and more polarizable) agarose sample Ag2. As a consequence, Ag2 (but not Ag1) gels retained more H2O than D2O. In contrast, the bulk rheology of either hydrogel was not affected by the isotopic exchange.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    K.B. Wiberg, Chem. Rev. 55, 713 (1955)CrossRefGoogle Scholar
  2. 2.
    S. Scheiner, M. Cuma, J. Am. Chem. Soc. 118, 1511 (1996)CrossRefGoogle Scholar
  3. 3.
    A. Soper, C. Benmore, Phys. Rev. Lett. 101, 065502 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    G.N. Lewis, R.T. Macdoland, J. Am. Chem. Soc. 55, 3057 (1933)CrossRefGoogle Scholar
  5. 5.
    E.A. Long, J. Kemp, J. Am. Chem. Soc. 58, 1829 (1936)CrossRefGoogle Scholar
  6. 6.
    H.C. Urey, G.K. Teal, Rev. Mod. Phys. 7, 34 (1935)ADSCrossRefGoogle Scholar
  7. 7.
    G. Chakrabarti, S. Kim, M.L. Gupta, J.S. Barton, R.H. Himes, Biochemistry 38, 3067 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Das, S. Sinha, B.R. Acharya, P. Paul, B. Bhattacharyya, G. Chakrabarti, BMB Rep. 41, 62 (2008)CrossRefGoogle Scholar
  9. 9.
    C.H. Luan, D.W. Urry, J. Phys. Chem. 95, 7896 (1991)CrossRefGoogle Scholar
  10. 10.
    A. Dong, B. Kendrick, L. Kreilgård, J. Matsuura, M.C. Manning, J.F. Carpenter, Arch. Biochem. Biophys. 347, 213 (1997)CrossRefGoogle Scholar
  11. 11.
    M.J. Parker, A.R. Clarke, Biochemistry 36, 5786 (1997)CrossRefGoogle Scholar
  12. 12.
    M. Verheul, S.P.F.M. Roefs, K.G. de Kruif, FEBS Lett. 421, 273 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Verheul, S.P.F.M. Roefs, K.G. de Kruif, J. Agric. Food Chem. 46, 896 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Calvin, J. Hermans, H.A. Scheraga, J. Am. Chem. Soc. 81, 5048 (1959)CrossRefGoogle Scholar
  15. 15.
    M.V.C. Cardoso, E. Sabadini, Carbohydr. Res. 345, 2368 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Pica, G. Graziano, Biopolymers 109, e23076 (2018)CrossRefGoogle Scholar
  17. 17.
    X.T. Fu, S.M. Kim, Mar. Drugs 8, 200 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Knutsen, D. Myslabodski, B. Larsen, A. Usov, Bot. Mar. 37, 163 (1994)CrossRefGoogle Scholar
  19. 19.
    K. Guiseley, Carbohyd. Res. 13, 247 (1970)CrossRefGoogle Scholar
  20. 20.
    J.M. Guenet, A. Brulet, C. Rochas, Int. J. Biol. Macromol. 15, 131 (1993)CrossRefGoogle Scholar
  21. 21.
    J.M. Guenet, C. Rochas, A. Brulet, J. Phys. IV 3, 99 (1993)Google Scholar
  22. 22.
    K. Nishinari, M. Watase, K. Kohyama, N. Nishinari, D. Oakenfull, K. Shoichiro, O. Kazuyoshi, P.A. Williams, G.O. Phillips, Polym. J. 24, 871 (1992)CrossRefGoogle Scholar
  23. 23.
    V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard, Biomacromolecules 1, 730 (2000)CrossRefGoogle Scholar
  24. 24.
    K. Nishinari, M. Watase, E. Miyoshi, T. Takaya, D. Oakenfull, Food Technol. 49, 90 (1995)Google Scholar
  25. 25.
    S. Arnott, A. Fulmer, W.E. Scott, I.C.M. Dea, R. Moorhouse, D.A. Rees, J. Mol. Biol. 90, 269 (1974)CrossRefGoogle Scholar
  26. 26.
    I.J. Miller, R. Falshaw, R.H. Furneaux, Carbohydr. Res. 262, 127 (1994)CrossRefGoogle Scholar
  27. 27.
    S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)ADSCrossRefGoogle Scholar
  28. 28.
    P. Belton, Food Rev. Int. 27, 170 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Paradossi, F. Cavalieri, V. Crescenzi, Carbohydr. Res. 300, 77 (1997)CrossRefGoogle Scholar
  30. 30.
    M.C. Vieira, A.M. Gil, Carbohydr. Polym. 60, 439 (2005)CrossRefGoogle Scholar
  31. 31.
    P.J. Flory, J. Chem. Phys. 9, 660 (1941)ADSCrossRefGoogle Scholar
  32. 32.
    M.L. Huggins, J. Phys. Chem. 46, 151 (1942)CrossRefGoogle Scholar
  33. 33.
    T. Brenner, S. Matsukawa, Int. J. Biol. Macromol. 92, 1151 (2016)CrossRefGoogle Scholar
  34. 34.
    T. Brenner, S. Matsukawa, Int. J. Biol. Macromol. 114, 187 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Djabourov, A.H. Clark, D.W. Rowlands, S.B. Ross-Murphy, Macromolecules 22, 180 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    M.J. Solomon, P.T. Spicer, Soft Matter 6, 1391 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    N. Russ, B.I. Zielbauer, K. Koynov, T.A. Vilgis, Biomacromolecules 14, 4116 (2013)CrossRefGoogle Scholar
  38. 38.
    W. Derbyshire, I. Duff, Faraday Discuss. Chem. Soc. 57, 243 (1974)CrossRefGoogle Scholar
  39. 39.
    Y. Huang, E. Davies, P. Lillford, J. Agric. Food Chem. 59, 4078 (2011)CrossRefGoogle Scholar
  40. 40.
    P. Dejmek, P. Walstra, in Cheese: Chemistry, Physics and Microbiology, Vol. 1: General Aspects, edited by P. Fox, P. McSweeney, T. Cogan, T. Guinee (Elsevier Academic Press, Amsterdam, The Netherlands, 2004) p. 71Google Scholar
  41. 41.
    R. Bosque, J. Sales, J. Chem. Inf. Comput. Sci. 42, 1154 (2002)CrossRefGoogle Scholar
  42. 42.
    E. Amici, A.H. Clark, V. Normand, N.B. Johnson, Biomacromolecules 3, 466 (2002)CrossRefGoogle Scholar
  43. 43.
    T. Brenner, F. Hayakawa, S. Ishihara, Y. Tanaka, M. Nakauma, K. Kohyama, P. Achayuthakan, T. Funami, K. Nishinari, J. Texture Stud. 45, 30 (2014)CrossRefGoogle Scholar
  44. 44.
    J.R. Mitchell, J. Texture Stud. 11, 315 (1980)CrossRefGoogle Scholar
  45. 45.
    J. Jones, C. Marques, J. Phys. (Paris) 51, 1113 (1990)CrossRefGoogle Scholar
  46. 46.
    Z. Wang, K. Yang, T. Brenner, H. Kikuzaki, K. Nishinari, Food Hydrocolloids 36, 196 (2014)CrossRefGoogle Scholar
  47. 47.
    K. Nishinari, M. Watase, Thermochim. Acta 206, 149 (1992)CrossRefGoogle Scholar
  48. 48.
    K. Nishinari, M. Watase, T. Hatakeyama, Colloid Polym. Sci. 275, 1078 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tom Brenner
    • 1
    Email author
  • Rando Tuvikene
    • 2
  • Yiping Cao
    • 3
  • Yapeng Fang
    • 3
  • Masahiro Rikukawa
    • 1
  • William S. Price
    • 4
  • Shingo Matsukawa
    • 5
  1. 1.Faculty of Science and Technology, Materials and Life SciencesSophia UniversityTokyoJapan
  2. 2.School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
  3. 3.Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Pharmaceutical Engineering, Faculty of Light IndustryHubei University of TechnologyWuchang, WuhanChina
  4. 4.Nanoscale Organisation and Dynamics Group, School of Science and HealthWestern Sydney UniversityPenrithAustralia
  5. 5.Graduate School of Science and TechnologyTokyo University of Marine Science and TechnologyTokyoJapan

Personalised recommendations