Advertisement

A numerical coupling method for particle tracking in electromagnetic fields

  • Heng Jing
  • Xiaoqing YangEmail author
  • Shiyue Wu
  • Man Zhang
  • Jie Zhou
  • Jianping Yuan
  • Zhanxia Zhu
  • Kama Huang
Regular Article
  • 31 Downloads

Abstract.

With the arrival of the information age, the electromagnetic energy in space increases constantly, resulting in the influence of electromagnetic waves on the charged aerosol particles in the environment which should be taken into account. Here, a numerical coupling method based on temporal and spatial scales is proposed to solve the difficulty in obtaining the trajectory of particles under the action of high-frequency electromagnetic waves. In the temporal scale, two constant forces with linear relationship are used to equilibrate the electromagnetic field forces under different conditions, however the above-mentioned equivalent method has the space limitation; in addition, on the spatial scale, the model with larger geometry should be divided into multiple basic modules spatially, the domain division method is adopted and due to the above method it can be used well in the basic module. Verified the correctness through the comparison of the results, and compared with the traditional method, the above method greatly reduces the computational complexity. Some interesting results were obtained by calculating the modulated waves with the above method, which indicate that special forms of electromagnetic waves will significantly affect the motion of particles.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

Supplementary material

10189_2019_11810_MOESM1_ESM.pdf (167 kb)
Supplementary material

References

  1. 1.
    W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (John Wiley & Sons, 2012)Google Scholar
  2. 2.
    Y. Wang, J. Kangasluoma, M. Attoui, J. Fang, Combust. Flame 176, 72 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Shimada, K. Okuyama, Y. Kousaka, Y. Okuyama, J.H. Seinfeld, J. Colloid Interface Sci. 128, 157 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    P.J. Sides, Langmuir 17, 5791 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Trau, D.A. Saville, I.A. Aksay, Langmuir 13, 6375 (1997)CrossRefGoogle Scholar
  7. 7.
    Paul J. Sides, Langmuir 17, 5791 (2001)CrossRefGoogle Scholar
  8. 8.
    Mani Diba, Aldo R. Boccaccini, Prog. Mater. Sci. 82, 83 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Yafouz, N.A. Kadri, H.A. Rothan, R. Yusof, Electrophoresis 37, 511 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Alshareef, N. Metrakos, E.J. Perez, F. Azer, F. Yang, Biomicrofluidics 7, 011803 (2013)CrossRefGoogle Scholar
  11. 11.
    K. Graham, H. Mulhall, F. Labeed, M. Lewis, K. Hoettges, Analyst 140, 5198 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Yongpin P. Chen, Wei E.I. Sha et al., Comput. Phys. Commun. 215, 63 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    William L. Oberkampfa, Timothy G. Trucanob, Prog. Aerospace Sci. 38, 209 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    P.V. Nikitin, K.V.S. Rao, IEEE Trans. Antennas Propag. 54, 1906 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Q. Wu, F. Shi, Int. J. Comput. Math. 94, 1943 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H.J. Landau, Proc. IEEE 55, 10 (1967)CrossRefGoogle Scholar
  17. 17.
    Allen Taflove, Proc. IEEE 77, 5 (1989)Google Scholar
  18. 18.
    V.V. Zamaruiev, IEEE First Ukraine Conference on Electrical and Computer Engineering (Ukrcon) (IEEE, 2017) pp. 522--527Google Scholar
  19. 19.
    S.Q. Li, J.S. Marshall, G.Q. Liu, Q. Yao, Prog. Energy Combust. Sci. 37, 633 (2011)CrossRefGoogle Scholar
  20. 20.
    H.C. Brinkman, Appl. Sci. Res. Sect. A: Mech. Heat Chem. Eng. Math. Methods 1, 27 (1947)CrossRefGoogle Scholar
  21. 21.
    E. Rolls, R. Erban, J. Chem. Phys. 148, 194111 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000)Google Scholar
  23. 23.
    H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Chem. Eng. Sci. 62, 3378 (2007)CrossRefGoogle Scholar
  24. 24.
    E.E. Michaelides, J. Fluids Eng. 138, 051303 (2016)CrossRefGoogle Scholar
  25. 25.
    J.S. Marshall, J. Comput. Phys. 228, 1541 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Y.P.P. Chen, W.E.I. Sha, L.J. Jiang, Comput. Phys. Commun. 215, 63 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A.S. Berrouk, C.L. Wu, Chem. Eng. J. 160, 810 (2010)CrossRefGoogle Scholar
  28. 28.
    D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, H. Tsukamoto, Int. J. Multiphase Flow 43, 85 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Shaikh, M.H. Al-Dahhan, Int. J. Chem. React. Eng. 5, 1 (2007)Google Scholar
  30. 30.
    Y.Q. Huang, J.C. Li, J. Comput. Appl. Math. 235, 3932 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Wang, J. Jiang, W. Cai, J. Math. Phys. 52, 123701 (2011)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    E.J. Hinch, J. Fluid Mech. 72, 499 (1975)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N. Fuchs, R. Daisley, M. Fuchs, C. Davies, M. Straumanis, Phys. Today 18, 73 (1965)CrossRefGoogle Scholar
  34. 34.
    M.A. Islam, Phys. Scr. 70, 120 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    J. Tothova, V. Lisy, Acta Phys. Slovaca 65, 1 (2015)Google Scholar
  36. 36.
    J.C. Duan, J.H. Tan, Atmos. Environ. 74, 93 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    X. Xu, T. Zhao, F. Liu, S.L. Gong, Atmos. Chem. Phys. 16, 1365 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Q. Zhang, J.N. Quan, X.X. Tie, X. Li, Q. Liu, Y. Gao, D.L. Zhao, Sci. Total Environ. 502, 578 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    G.J. Zheng, F.K. Duan, H. Su, Atmos. Chem. Phys. 15, 2969 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Zhang et al., Sci. Rep. 8, 5504 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    Z. RenHe, Q. Li, R. Zhang, Sci. China Earth Sci. 57, 26 (2013)CrossRefGoogle Scholar
  42. 42.
    W. Cai, K. Li, H. Liao, H. Wang, L. Wu, Nat. Clim. Change 7, 257 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    H. Burtscher, J. Aerosol Sci. 23, 549 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    R.J. Robinson, C.P. Yu, J. Aerosol Sci. 30, 533 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    A.K. Dhami, Women Phys. 1517, 236 (2013)ADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Heng Jing
    • 1
  • Xiaoqing Yang
    • 1
    Email author
  • Shiyue Wu
    • 1
  • Man Zhang
    • 1
  • Jie Zhou
    • 1
  • Jianping Yuan
    • 2
  • Zhanxia Zhu
    • 2
  • Kama Huang
    • 1
  1. 1.College of Electronics and Information EngineeringSichuan UniversityChengduChina
  2. 2.School of AstronauticsNorthwest Polytechnical UniversityXi’anChina

Personalised recommendations