The thermal jamming transition of soft harmonic disks in two dimensions

  • Moumita Maiti
  • Michael SchmiedebergEmail author
Regular Article


By exploring the properties of the energy landscape of a bidisperse system of soft harmonic disks in two dimensions we determine the thermal jamming transition. To be specific, we study whether the ground state of the system where the particles do not overlap can be reached within a reasonable time. Starting with random initial configurations, the energy landscape is probed by energy minimization steps as in case of athermal jamming and in addition steps where an energy barrier can be crossed with a small but non-zero probability. For random initial conditions we find that as a function of packing fraction the thermal jamming transition, i.e. the transition from a state where all overlaps can be removed to an effectively non-ergodic state where one cannot get rid of the overlaps, occurs at a packing fraction of \(\phi_{G} = 0.74\), which is smaller than the transition packing fraction of athermal jamming at \(\phi_{J} = 0.842\). Furthermore, we show that the thermal jamming transition is in the universality class of directed percolation and therefore is fundamentally different from the athermal jamming transition.

Graphical abstract


Soft Matter: Colloids and Nanoparticles 


  1. 1.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    G.L. Hunter, E.R. Weeks, Rep. Prog. Phys. 75, 066501 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C.S. O’Hern, S.A. Langer, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 88, 075507 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    C.S. O’Hern, S.A. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    P. Chaudhuri, L. Berthier, S. Sastry, Phys. Rev. Lett. 104, 165701 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Maiti, M. Schmiedeberg, Sci. Rep. 8, 1837 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    P.K. Morse, E.I. Corwin, Phys. Rev. Lett. 119, 118003 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    L. Milz, M. Schmiedeberg, Phys. Rev. E 88, 062308 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M. Maiti, M. Schmiedeberg, J. Phys.: Condens. Matter 31, 165101 (2019)ADSGoogle Scholar
  10. 10.
    E. Flenner, G. Szamel, Nat. Commun. 6, 7392 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    H. Shiba, Y. Yamada, T. Kawasaki, K. Kim, Phys. Rev. Lett. 117, 245701 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S. Vivek, C.P. Kelleher, P.M. Chaikin, E.R. Weeks, Proc. Natl. Acad. Sci. U.S.A. 114, 1850 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    B. Illing, S. Fritschi, H. Kaiser, C.L. Klix, G. Maret, P. Keim, Proc. Natl. Acad. Sci. U.S.A. 114, 1856 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    W. Kauzmann, Chem. Rev. 43, 219 (1948)CrossRefGoogle Scholar
  16. 16.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    H. Hinrichsen, Adv. Phys. 49, 815 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    A. Donev, F.H. Stillinger, S. Torquato, Phys. Rev. Lett. 96, 225502 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bayer, J.M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J.P. Wittmer, Phys. Rev. E 76, 011508 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. Lett. 103, 168301 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Ikeda, L. Berthier, P. Sollich, Phys. Rev. Lett. 109, 018301 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    X. Wang, W. Zheng, L. Wang, N. Xu, Phys. Rev. Lett. 114, 035502 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    L. Berthier, T.A. Witten, EPL 86, 10001 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    L. Berthier, T.A. Witten, Phys. Rev. E 80, 021502 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    T.K. Haxton, M. Schmiedeberg, A.J. Liu, Phys. Rev. E 83, 031503 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Schmiedeberg, T.K. Haxton, S.R. Nagel, A.J. Liu, Europhys. Lett. 96, 36010 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Berthier, A.J. Moreno, G. Szamel, Phys. Rev. E 82, 060501(R) (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. Schmiedeberg, Phys. Rev. E 87, 052310 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    R. Miyazaki, T. Kawasaki, K. Miyazaki, Phys. Rev. Lett. 117, 165701 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Koeze, B.P. Tighe, Phys. Rev. Lett. 121, 188002 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. van Doorn, J. Bronkhorst, R. Higler, T. van de Laar, J. Sprakel, Phys. Rev. Lett. 118, 188001 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    M. Kohl, R.F. Capellmann, M. Laurati, S.U. Egelhaaf, M. Schmiedeberg, Nat. Commun. 7, 11817 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    A. Heuer, C.F.E. Schroer, D. Diddens, C. Rehwald, M. Blank-Burian, Eur. Phys. J. ST 226, 3061 (2017)CrossRefGoogle Scholar
  34. 34.
    M. Blank-Burian, A. Heuer, Phys. Rev. E 98, 033002 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    M. Maiti, M. Schmiedeberg, Energy landscape description of the clustering transition for active soft spheres, arXiv:1812.06839Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Physikalische ChemieWestfälische Wilhelms-Universität (WWU)MünsterGermany
  2. 2.Institut für Theoretische Physik IFriedrich-Alexander Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations