Advertisement

Dynamics of cooperative cargo transport by two elastically coupled kinesin motors

  • Yi-Ben Fu
  • Si-Kao Guo
  • Peng-Ye Wang
  • Ping XieEmail author
Regular Article
  • 60 Downloads

Abstract.

Intracellular transport is performed often by multiple motor proteins bound to the same cargo. Here, we study theoretically collective transport of the cargo by two kinesin motors. We propose that the motor has only the elastic interaction with the cargo via the linker connecting them and has no interaction with another motor. With parameters values for single motors from the available single-molecule data, we show that at linker’s elastic strength \( K\approx 0.25\) pN/nm the theoretical data of both velocity and run length of the two-motor assembly under no load are identical to the available experimental data. The run length distribution is single exponential. The single-motor-bound state of the assembly dominates the transport. Both the force dependence of the velocity of the cargo driven by single load-bearing motor and that by two load-bearing motors in the assembly are consistent with the experimental data. The stall force of the assembly is larger than the sum of stall forces of two uncoupled motors. Moreover, we predict that the stall force increases with the increase of K and becomes saturated at large K, with the saturated value being 1.5-fold larger than the sum of stall forces of the two uncoupled motors.

Graphical abstract

Keywords

Living systems: Structure and Function 

Supplementary material

10189_2019_11801_MOESM1_ESM.pdf (468 kb)
Supplementary material

References

  1. 1.
    R.D. Vale, T.S. Reese, M.P. Sheetz, Cell 42, 39 (1985)CrossRefGoogle Scholar
  2. 2.
    F. Kozielski, S. Sack, A. Marx, M. Thormählen, E. Schönbrunn, V. Biou, A. Thompson, E.M. Mandelkow, E. Mandelkow, Cell 91, 985 (1997)CrossRefGoogle Scholar
  3. 3.
    N. Hirokawa, Science 279, 519 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Schnitzer, S.M. Block, Nature 388, 386 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    K. Visscher, M.J. Schnitzer, S.M. Block, Nature 400, 184 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    M. Nishiyama, H. Higuchi, T. Yanagida, Nat. Cell. Biol. 4, 790 (2002)CrossRefGoogle Scholar
  7. 7.
    J.O.L. Andreasson, B. Milic, G.Y. Chen, N.R. Guydosh, W.O. Hancock, S.M. Block, eLife 4, e07403 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Xie, Int. J. Biol. Sci. 6, 665 (2010)CrossRefGoogle Scholar
  9. 9.
    M.J. Schnitzer, K. Visscher, S.M. Block, Nat. Cell. Biol. 2, 718 (2000)CrossRefGoogle Scholar
  10. 10.
    M.E. Fisher, A.B. Kolomeisky, Pro. Natl. Acad. Sci. U.S.A. 98, 7748 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    S. Liepelt, R. Lipowsky, Phys. Rev. Lett. 98, 258102 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    P. Xie, H. Chen, Phys. Chem. Chem. Phys. 20, 4752 (2018)CrossRefGoogle Scholar
  13. 13.
    S.K. Guo, P.Y. Wang, P. Xie, J. Theor. Biol. 414, 62 (2017)CrossRefGoogle Scholar
  14. 14.
    S.K. Guo, P.Y. Wang, P. Xie, Int. J. Biol. Macromol. 105, 1126 (2017)CrossRefGoogle Scholar
  15. 15.
    R.T. McLaughlin, M.R. Diehl, A.B. Kolomeisky, Soft Matter 12, 14 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Klumpp, R. Lipowsky, Pro. Natl. Acad. Sci. U.S.A. 102, 17284 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    D.K. Jamison, J.W. Driver, A.R. Rogers, P.E. Constantinou, M.R. Diehl, Biophys. J. 99, 2967 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A.R. Rogers, J.W. Driver, P.E. Constantinou, D.K. Jamison, M.R. Diehl, Phys. Chem. Chem. Phys. 11, 4882 (2009)CrossRefGoogle Scholar
  19. 19.
    O. Campàs, Y. Kafri, K.B. Zeldovich, J. Casademunt, J.F. Joanny, Phys. Rev. Lett. 97, 038101 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Wang, M. Li, Phys. Rev. E. 80, 041923 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    K. Uppulury, A.K. Efremov, J.W. Driver, D.K. Jamison, M.R. Diehl, A.B. Kolomeisky, J. Phys. Chem. B 116, 8846 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Bhat, M. Gopalakrishnan, EPL 117, 28004 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    F. Berger, C. Keller, S. Klumpp, R. Lipowsky, Phys. Rev. Lett. 108, 208101 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Berger, C. Keller, S. Klumpp, R. Lipowsky, Phys. Rev. E 91, 022701 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J.W. Driver, A.R. Rogers, M.R. Diehl, Phys. Chem. Chem. Phys. 12, 10398 (2010)CrossRefGoogle Scholar
  26. 26.
    J.W. Driver, D.K. Jamison, K. Uppulury, A.R. Rogers, A.B. Kolomeisky, M.R. Diehl, Biophys. J. 101, 386 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    P. Malgaretti, I. Pagonabarraga, J.F. Joanny, Phys. Rev. Lett. 119, 168101 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    J. Beeg, S. Klumpp, R. Lipowsky, Biophys. J. 94, 532 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Bameta, D. Das, D. Das, R. Padinhateeri, M.M. Inamdar, Phys. Rev. E 95, 022406 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    A. Kunwar, M. Vershinin, J. Xu, S.P. Gross, Curr. Biol. 18, 1173 (2008)CrossRefGoogle Scholar
  31. 31.
    C. Keller, F. Berger, S. Liepelt, R. Lipowsky, J. Stat. Phys. 150, 205 (2013)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Yildiz, M. Tomishige, A. Gennerich, R.D. Vale, Cell 134, 1030 (2008)CrossRefGoogle Scholar
  33. 33.
    N.J. Carter, R.A. Cross, Nature 435, 308 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    H.T. Vu, S. Chakrabarti, M. Hinczewski, D. Thirumalai, Phys. Rev. Lett. 117, 078101 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    S.K. Guo, X.X. Shi, P.Y. Wang, P. Xie, FEBS Open Bio 8, 1332 (2018)CrossRefGoogle Scholar
  36. 36.
    F. Berger, C. Keller, R. Lipowsky, S. Klumpp, Cell. Mol. Bioeng. 6, 48 (2013)CrossRefGoogle Scholar
  37. 37.
    W.J. Walter, V. Beranek, E. Fischermeier, S. Diez, PLoS One 7, e42218 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    C. Kural, H. Kim, S. Syed, G. Goshima, V.I. Gelfand, P.R. Selvin, Science 308, 1469 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    X. Nan, P.A. Sims, P. Chen, X.S. Xie, J. Phys. Chem. B 109, 24220 (2005)CrossRefGoogle Scholar
  40. 40.
    A.G. Hendricks, E.L.F. Holzbaur, Y.E. Goldman, Pro. Natl. Acad. Sci. U.S.A. 109, 18447 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A. Akhmanova, J.A. Hammer III, Curr. Opin. Cell Biol. 22, 479 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yi-Ben Fu
    • 1
    • 2
  • Si-Kao Guo
    • 1
    • 2
  • Peng-Ye Wang
    • 1
    • 2
  • Ping Xie
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations