Advertisement

Settling slip velocity of a spherical particle in an unbounded micropolar fluid

  • Shreen El-SapaEmail author
Regular Article

Abstract.

The gravitational settling of small spherical particles in an unbounded micropolar fluid with slip surfaces is considered. The motion is studied under the assumption of low Reynolds number. The slip boundary conditions on velocity and microrotation at the surface of the spherical particle is used. The solution for the stream function of the fluid flow is obtained analytically. The settling velocity is obtained and is plotted against the Knudsen number for various values of the micropolarity parameter and constants depending on the material of the solid surface. The problem of rotational motion of a particle with slip surface is also solved and the torque coefficient acting on the spherical particle is obtained and is plotted against Knudsen number for different values of micropolarity parameter, spin parameter, and the material constants. The correction to the Basset equation for settling velocity under gravity for slip particle in micropolar fluids is discussed with the range of Knudsen number which has been proven with known results available in the literature.

Graphical abstract

Keywords

Flowing Matter: Active Fluids 

References

  1. 1.
    F. Zegler, B. Kutter, Evolving to a Depot-Based Space Transportation Architecture, AIAA Space 2010, Conference & Exposition, Anaheim, California (AIAA, 2010) AIAA 2010-8638Google Scholar
  2. 2.
    W.E. Dietrich, Water Resour. Res. 18, 1615 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    H.J. Keh, L. Yu Jiunn, Aerosol Sci. Technol. 22, 250 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    T.S. Yang, S.S. Shy, Phys. Fluids 15, 868 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    C. Benoit, J. Hydraul. Eng. 133, 229 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Dejoan, R. Monchaux, Phys. Fluids 25, 013301 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M. Sahil, M.S. Mukul, J. Vis. Exp. 83, 50749 (2014)Google Scholar
  8. 8.
    E. Del Bello, J. Taddeucci, M. de' Michieli Vitturi, P. Scarlato, D. Andronico, S. Scollo, U. Kueppers, T. Ricci, Sci. Rep. 7, 39620 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    P.D. Huck, C. Bateson, R. Volk, A. Cartellier, J. Fluid Mech. 846, 1059 (2018)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D.C. Tretheway, C.D. Meinhart, Phys. Fluids 14, L9 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhu, S. Granik, Phys. Rev. Lett. 87, 096 (2001)Google Scholar
  12. 12.
    R. Pit, H. Hervet, L. Leger, Phys. Rev. Lett. 85, 980 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    C. Choi, J.A. Westin, K.S. Breuer, Phys. Fluids 15, 2897 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    D.C. Tretheway, C.D. Meinharta, Phys. Fluids 16, 1509 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    M. Navier, Mémoire sur les lois du mouvement des fluides, Mémoires del'Académie Royale des Sciences, Paris (1823) Tome VI, p. 389Google Scholar
  16. 16.
    J.C.X. Maxwelll, Philos. Trans. R. Soc., Part 1 170, 231 (1823)Google Scholar
  17. 17.
    A.B. Basset, A Treatise on Hydrodynamics, Vol. 2 (Dover, New York, 1961) pp. 260--271Google Scholar
  18. 18.
    S.A. Schaaf, P.L. Chambre, Flow of Rarefied Gases (Princeton University Press, Princeton, 1961)Google Scholar
  19. 19.
    A.C. Eringen, J. Math. Mech. 16, 1 (1966)MathSciNetGoogle Scholar
  20. 20.
    H.H. Sherief, M.S. Faltas, Shreen El-Sapa, Can. J. Phys. 95, 885 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    H.H. Sherief, M.S. Faltas, E.A. Ashmawy, M.G. Nashwan, J. Mol. Liquids 200, 273 (2014)CrossRefGoogle Scholar
  22. 22.
    H.H. Sherief, M.S. Faltas, E.A. Ashmawy, M.G. Nashwan, Meccanica 53, 2319 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H.H. Sherief, M.S. Faltas, Shreen El-Sapa, Meccanica 52, 2655 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Ezzat, Shreen El-Sapa, Int. J. Numer. Methods Fluids 70, 114 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Shreen El-Sapa, E.I. Saad, M.S. Faltas, Eur. J. Mech. B/Fluids 67, 306 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D.Yu. Khanukaeva, A.N. Filippov, Colloid J. 80, 14 (2018)CrossRefGoogle Scholar
  27. 27.
    N.P. Migun, Rheol. Acta. 23, 555 (1984)CrossRefGoogle Scholar
  28. 28.
    E.L. Aero, A.N. Bulygin, E.V. Kuvshinskii, Appl. Math. Methods 29, 333 (1965)Google Scholar
  29. 29.
    H. Ramkisson, S.R. Majumdar, Phys. Fluids 19, 16 (1976)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Ramkisson, Arch. Mech. 45, 47 (1993)Google Scholar
  31. 31.
    F. Momen-Heravi, L. Balaj, S. Alian, A.J. Trachtenberg, F.H. Hochberg, J. Skog, W.P. Kuo, Front. Physiol. 3, 162 (2012)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceDamanhour UniversityDamanhourEgypt
  2. 2.Department of Mathematics, Faculty of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia

Personalised recommendations