Advertisement

A hydrodynamic-stochastic model of chemotactic ciliated microorganisms

  • Ruma Maity
  • P. S. BuradaEmail author
Regular Article

Abstract.

Biological systems like ciliated microorganisms are capable of responding to the external chemical gradients, a process known as chemotaxis. In this process, the internal signaling network of the microorganism is triggered due to binding of the chemoattractant molecules with the receptors on the surface of the body. This can alter the activity at the surface of the microorganism. We study the chemotaxis of ciliated microorganisms using the chiral squirmer model, a spherical body with a surface slip velocity. In the presence of a chemical gradient, the coefficients of the slip velocity get modified resulting in a change in the path followed by the body. We observe that the strength of the gradient is not the only parameter which controls the dynamics of the body but also the adaptation time plays a very significant role in the success of chemotaxis. The trajectory of the body is smooth if we ignore the discreteness in the ligand-receptor binding which is stochastic in nature. In the presence of the latter, the path is not only irregular but the whole dynamics of the body changes. We calculate the mean first passage time, by varying the strength of the chemical gradient and the adaptation time, to determine the success rate of chemotaxis.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

References

  1. 1.
    B.M. Friedrich, F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 104, 13256 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Hadwiger, S. Lee, R.A. Firtel, Proc. Natl. Acad. Sci. U.S.A. 91, 10566 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    T. Shaw, P. Martin, J. Cell Sci. 122, 3209 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Martin, S.M. Parkhurst, Development 131, 3021 (2004)CrossRefGoogle Scholar
  5. 5.
    X. Wang, SIAM J. Math. Anal. 31, 535 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P.K. Ghosh, Y. Li, F. Marchesoni, F. Nori, Phys. Rev. E 92, 012114 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    I. Lagzi, Cent. Eur. J. Med. 8, 377 (2013)Google Scholar
  8. 8.
    A. Sahari, D. Headen, B. Behkam, Biomed. Microdevices 14, 999 (2012)CrossRefGoogle Scholar
  9. 9.
    B. Dai, J. Wang, Z. Xiong, W. Dai, C.C. Li, S.P. Feng, J. Tang, Nat. Nanotechnol. 11, 1087 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    T. Bickel, G. Zecua, Alois Würger, Phys. Rev. E 89, 050303 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Larsen, R. Macnab, D.E. Koshland, Nature 249, 74 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    T. Nebl, P.R. Fisher, J. Cell Sci. 110, 2845 (1997)Google Scholar
  13. 13.
    H.S. Jennings, Behaviour of The Lower Organisms (Columbia University Press, 1906) p. 41Google Scholar
  14. 14.
    A.N. Sarvestani, A. Shamloo, M.T. Ahmadian, Cell Biochem. Biophys. 74, 241 (2016)CrossRefGoogle Scholar
  15. 15.
    I. Nakatani, J. Fac. Sci, Hokkaido Univ., Ser. VI Zool. 17, 401 (1970)Google Scholar
  16. 16.
    J.V. Houten, J. Comp. Physiol. 127, 167 (1978)CrossRefGoogle Scholar
  17. 17.
    M. Almagor, A. Ron, J. Bar-Tana, Cell Motil. 1, 261 (1981)CrossRefGoogle Scholar
  18. 18.
    W. Korohoda, J. Golda, J. Sroka, A. Wojnarowicz, P. Jochym, Z. Madeja, Cytoskeleton 38, 38 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Dev, S. Chatterjee, Phys. Rev. E 91, 042714 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Samanta, R. Layek, S. Kar, M.K. Raj, S. Mukhopadhyay, S. Chakraborty, Phys. Rev. E 96, 032409 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. 103, 068102 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Y.H. Hussain, J.S. Guasto, R.K. Zimmer, R. Stocker, J.A. Riffell, J. Exp. Biol. 219, 1458 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Lu, S. Wang, Z. Sun, R. Niu, J. Wang, Arch. Toxicol. 88, 533 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Yoshida, K. Yoshida, Mol. Hum. Reprod. 17, 457 (2011)CrossRefGoogle Scholar
  25. 25.
    J.F. Jikeli, L. Alvarez, B.M. Friedrich, L.G. Wilson, R. Pascal, R. Colin, M. Pichlo, A. Rennhack, C. Brenker, U.B. Kaupp, Nat. Commun. 6, 7985 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Pichlo, S.B. Plümke, I. Weyand, R. Seifert, W. Bönigk, T. Strünker, N.D. Kashikar, N. Godwin, A. Müller, H.G. Körschen, U. Collienne, P. Pelzer, Q. Van, J. Enderlein, C. Klemm, E. Krause, C. Trötschel, A. Poetsch, E. Kremmer, U.B. Kaupp, J. Cell Biol. 206, 541 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Darszon, T. Nishigaki, C. Beltran, C.L. Treviño, Physiol. Rev. 91, 1305 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Alvarez, B.M. Friedrich, G. Gompper, U.B. Kaupp, Trends Cell Biol. 24, 198 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Perez-Miravete, Behaviour of Micro-Organisms (Plenum Press, 1973)Google Scholar
  30. 30.
    G.A. Antipa, K. Martin, M.T. Rintz, J. Protozool. 30, 55 (1983)CrossRefGoogle Scholar
  31. 31.
    M.J. Doughty, Comp. Biochem. Physiol. C 63, 183 (1979)CrossRefGoogle Scholar
  32. 32.
    K. Oami, J. Comp. Physiol. A 179, 345 (1996)CrossRefGoogle Scholar
  33. 33.
    A.S. Shah, Y.B. Shahar, T.O. Moninger, J.N. Kline, M.J. Welsh, Science 325, 1131 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    R.R. Preston, P.N.R. Usherwood, J. Comp. Physiol. B 158, 345 (1988)CrossRefGoogle Scholar
  35. 35.
    J. Elgeti, G. Gompper, Proc. Natl. Acad. Sci. U.S.A. 110, 4470 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    C. Battle, C.M. Ott, D.T. Burnette, J.L. Schwartz, C.F. Schmidt, Proc. Natl. Acad. Sci. U.S.A. 112, 1410 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)CrossRefGoogle Scholar
  38. 38.
    J.R. Blake, J. Fluid. Mech. 46, 199 (1971)ADSCrossRefGoogle Scholar
  39. 39.
    S. Michelin, E. Lauga, Bull. Math. Biol. 72, 973 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    T. Ishikawa, M.P. Simonds, T.J. Pedley, J. Fluid. Mech. 568, 119 (2006)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    H.C. Crenshaw, Biophys. J. 56, 1029 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    T. Fenchel, P.R. Jonsson, Mar. Ecol. Prog. Ser. 48, 1 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    S. Jana, S.H. Um, S. Jung, Phys. Fluids 24, 041901 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    P.S. Burada, F. Jülicher, private communicationGoogle Scholar
  46. 46.
    O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)CrossRefGoogle Scholar
  47. 47.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  48. 48.
    G.K. Batchelor, J. Fluid Mech. 74, 1 (1976)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Happel, H. Brenner Low Reynolds Number Hydrodynamics (Springer, 1983)Google Scholar
  50. 50.
    H.A. Stone, A.D.T. Samuel, Phys. Rev. Lett. 77, 4102 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    I.A. Suwan, M.G. Daraghmeh, A.M. Ziqan, Appl. Math. Sci. 7, 7143 (2013)MathSciNetGoogle Scholar
  52. 52.
    R. Wittkowski, H. Löwen, Phys. Rev. E 85, 021406 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    V. Sourjik, N.S. Wingreen, Curr. Opin. Cell Biol. 24, 262 (2012)CrossRefGoogle Scholar
  54. 54.
    V. Sourjik, Trends Microbiol. 12, 569 (2004)CrossRefGoogle Scholar
  55. 55.
    R.A. Bradshaw, E.A. Dennis, Handbook of Cell Signaling (Academic Press, 2009)Google Scholar
  56. 56.
    M.F. Goy, M.S. Springer, J. Adler, Proc. Natl. Acad. Sci. U.S.A. 74, 4964 (1977)ADSCrossRefGoogle Scholar
  57. 57.
    M. Bohmer, Q. Van, I. Wayand, V. Hagen, M. Beyermann, M. Matsumoto, M. Hoshi, E. Hilderbrand, U.B. Kaupp, EMBO J. 24, 2741 (2005)CrossRefGoogle Scholar
  58. 58.
    N.D. Kashikar, L. Alvarez, R. Seifert, I. Gregor, O. Jackle, M. Beyermann, E. Krause, U.B. Kaupp, J. Cell Biol. 198, 1075 (2012)CrossRefGoogle Scholar
  59. 59.
    N. Barkai, S. Leibler, Nature 387, 913 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    N. Vladimirov, L. Lovdok, D. Lebiedz, V. Sourjik, PLOS Comput. Biol. 4, e1000242 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    V. Sourjik, N.S. Wing, Curr. Opin. Cell Biol. 24, 262 (2012)CrossRefGoogle Scholar
  62. 62.
    H.C. Berg, Random Walks in Biology (Princeton University Press, 1983)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Center for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations