Advertisement

Resolving solution conformations of the model semi-flexible polyelectrolyte homogalacturonan using molecular dynamics simulations and small-angle x-ray scattering

  • Bradley W. ManselEmail author
  • Amir Hossein Irani
  • Timothy M. Ryan
  • Duncan J. McGillivray
  • Hsin-Lung Chen
  • Martin A. K. Williams
Regular Article
  • 17 Downloads

Abstract.

The conformation of polyelectrolytes in the solution state has long been of interest in polymer science. Herein we utilize all atom molecular dynamics simulations (MD) and small-angle x-ray scattering experiments (SAXS) to elucidate the molecular structure of the model polyelectrolyte homogalacturonan. Several degrees of polymerization were studied and in addition partial methylesterification of the otherwise charge-carrying carboxyl groups was used in order to generate samples with varying intra-chain charge distributions. It is shown that at length scales above around 1nm the conformation of isolated chains has surprisingly little dependence on the charge distribution or the concentration of attendant monovalent salts, reflective of the intrinsic stiffness of the saccharide rings and the dynamical constraints of the glycosidic linkage. Indeed the conformation of isolated chains over all accessible length scales is well described by the atomic coordinates available from fibre diffraction studies. Furthermore, in more concentrated systems it is shown that, after careful analysis of the SAXS data, the form of the inter-particle effects heralded by the emergence of a so-called polyelectrolyte peak, can be extracted, and that this phenomena can be reproduced by multiple chain MD simulations.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M. Muthukumar, Macromolecules 50, 9528 (2017)ADSGoogle Scholar
  2. 2.
    N. Ise, T. Okubo, Y. Hiragi, H. Kawai, T. Hashimoto, M. Fujimura, A. Nakajima, H. Hayashi, J. Am. Chem. Soc. 101, 5836 (1979)Google Scholar
  3. 3.
    J. Pleštil, J. Mikeš, K. Dušek, Acta Polym. 30, 29 (1979)Google Scholar
  4. 4.
    N. Ise, T. Okubo, K. Yamamoto, H. Kawai, T. Hashimoto, M. Fujimura, Y. Hiragi, J. Am. Chem. Soc. 102, 7901 (1980)Google Scholar
  5. 5.
    L. Wang, V.A. Bloomfield, Macromolecules 24, 5791 (1991)ADSGoogle Scholar
  6. 6.
    J.P. Cotton, M. Moan, J. Phys. (Paris) Lett. 37, 75 (1976)ADSGoogle Scholar
  7. 7.
    M. Moan, C. Wolff, J.P. Cotton, R. Ober, Determination of the conformation of polyelectrolytes in solution by small-angle neutron elastic scattering, J. Polym. Sci.: Polym. Symp., Vol. 61 (Wiley Online Library, 1977) pp. 1--8Google Scholar
  8. 8.
    M. Nierlich, C. Williams, F. Boué, J. Cotton, M. Daoud, M. Farnoux, G. Jannink, C. Picot, J. Appl. Crystallogr. 11, 504 (1978)Google Scholar
  9. 9.
    M. Nierlich, C.E. Williams, F. Boue, J.P. Cotton, M. Daoud, B. Famoux, G. Jannink, C. Picot, M. Moan, C. Wolff et al., J. Phys. (Paris) 40, 701 (1979)Google Scholar
  10. 10.
    D. Wang, J. Lal, D. Moses, G.C. Bazan, A.J. Heeger, Chem. Phys. Lett. 348, 411 (2001)ADSGoogle Scholar
  11. 11.
    W. Essafi, F. Lafuma, C.E. Williams, Eur. Phys. J. B 9, 261 (1999)ADSGoogle Scholar
  12. 12.
    W. Essafi, M.N. Spiteri, C. Williams, F. Boué, Macromolecules 42, 9568 (2009)ADSGoogle Scholar
  13. 13.
    F. Boué, J. Combet, B. Demé, M. Heinrich, J.G. Zilliox, M. Rawiso, Polymers 8, 228 (2016)Google Scholar
  14. 14.
    J.L. Barrat, F. Joanny, Adv. Chem. Phys.: Polym. Syst. 94, 1 (1996)Google Scholar
  15. 15.
    A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005)Google Scholar
  16. 16.
    P.G. De Gennes, P. Pincus, R.M. Velasco, F. Brochard, J. Phys. (Paris) 37, 1461 (1976)Google Scholar
  17. 17.
    M. Nierlich, F. Boué, A. Lapp, R. Oberthur, J. Phys. (Paris) 46, 649 (1985)Google Scholar
  18. 18.
    S. Takagi, G.A. Jeffrey, Cryst. Chem. 35, 902 (1979)Google Scholar
  19. 19.
    L.M. Kent, T.S. Loo, L.D. Melton, D. Mercadante, M.A.K. Williams, G.B. Jameson, J. Biol. Chem. 291, 1289 (2016)Google Scholar
  20. 20.
    P.M. Gilsenan, R.K. Richardson, E.R. Morris, Carbohydr. Polym. 41, 339 (2000)Google Scholar
  21. 21.
    B.W. Mansel, C.Y. Chu, A. Leis, Y. Hemar, H.L. Chen, L. Lundin, M.A. Williams, Biomacromolecules 16, 3209 (2015)Google Scholar
  22. 22.
    S. Cros, Biopolymers 39, 339 (1996)Google Scholar
  23. 23.
    I. Braccini, R.P. Grasso, S. Pérez, Carbohydr. Res. 317, 119 (1999)Google Scholar
  24. 24.
    M.C. Jarvis, D.C. Apperley, Carbohydr. Res. 275, 131 (1995)Google Scholar
  25. 25.
    R. Noto, V. Martorana, D. Bulone, P.L. San Biagio, Biomacromolecules 6, 2555 (2005)Google Scholar
  26. 26.
    J. Van der Maarel, K. Kassapidou, Macromolecules 31, 5734 (1998)ADSGoogle Scholar
  27. 27.
    X. Qiu, L.W. Kwok, H.Y. Park, J.S. Lamb, K. Andresen, L. Pollack, Phys. Rev. Lett. 96, 138101 (2006)ADSGoogle Scholar
  28. 28.
    M. Kotlarchyk, S.H. Chen, J. Chem. Phys. 79, 2461 (1983)ADSGoogle Scholar
  29. 29.
    D.G. Greene, D.V. Ferraro, A.M. Lenhoff, N.J. Wagner, J. Appl. Crystallogr. 49, 1734 (2016)Google Scholar
  30. 30.
    G. Jannink, Structure factors of polyelectrolyte solutions revealed by neutron scattering, Macromol. Symp., Vol. 1 (Wiley Online Library, 1986) pp. 67--90Google Scholar
  31. 31.
    M. Nierlich, F. Boue, A. Lapp, R. Oberthür, Colloid Polym. Sci. 263, 955 (1985)Google Scholar
  32. 32.
    E. Josef, H. Bianco-Peled, Soft Matter 8, 9156 (2012)ADSGoogle Scholar
  33. 33.
    M.A. Williams, G.M. Buffet, T.J. Foster, Anal. Biochem. 301, 117 (2002)Google Scholar
  34. 34.
    A.H. Irani, J.L. Owen, D. Mercadante, M.A.K. Williams, Biomacromolecules 18, 505 (2017)Google Scholar
  35. 35.
    M.A. Williams, A. Cucheval, A.T. Nasseri, M.C. Ralet, Biomacromolecules 11, 1667 (2010)Google Scholar
  36. 36.
    N.M. Kirby, S.T. Mudie, A.M. Hawley, D.J. Cookson, H.D.T. Mertens, N. Cowieson, V. Samardzic-Boban, J. Appl. Crystallogr. 46, 1670 (2013)Google Scholar
  37. 37.
    C. Williams, M. Nierlich, J. Cotton, G. Jannink, F. Boue, M. Daoud, B. Farnoux, C. Picot, P. DeGennes, M. Rinaudo et al., J. Polym. Sci.: Polym. Lett. Ed. 17, 379 (1979)ADSGoogle Scholar
  38. 38.
    V. Krakoviack, J. Hansen, A. Louis, Europhys. Lett. 58, 53 (2002)ADSGoogle Scholar
  39. 39.
    K. Nishida, K. Kaji, T. Kanaya, T. Shibano, Macromolecules 35, 4084 (2002)ADSGoogle Scholar
  40. 40.
    L. Skinner, M. Galib, J. Fulton, C. Mundy, J. Parise, V.T. Pham, G. Schenter, C. Benmore, J. Chem. Phys. 144, 134504 (2016)ADSGoogle Scholar
  41. 41.
    A. Narten, C.G. Venkatesh, S. Rice, J. Chem. Phys. 64, 1106 (1976)ADSGoogle Scholar
  42. 42.
    A. Okhulkov, Y.N. Demianets, Y.E. Gorbaty, J. Chem. Phys. 100, 1578 (1994)ADSGoogle Scholar
  43. 43.
    H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)ADSGoogle Scholar
  44. 44.
    R.J. Woods, R.A. Dwek, C.J. Edge, B. Fraser-Reid, J. Phys. Chem. 99, 3832 (1995)Google Scholar
  45. 45.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)Google Scholar
  46. 46.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSGoogle Scholar
  47. 47.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)ADSGoogle Scholar
  48. 48.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)ADSGoogle Scholar
  49. 49.
    The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC (2010)Google Scholar
  50. 50.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)Google Scholar
  51. 51.
    D.I. Svergun, C. Barberato, M.H.J. Koch, J. Appl. Crystallogr. 28, 768 (1995)Google Scholar
  52. 52.
    T. Odijk, J. Polym. Sci. Part B: Polym. Phys. 15, 477 (1977)ADSGoogle Scholar
  53. 53.
    J. Skolnick, M. Fixman, Macromolecules 10, 944 (1977)ADSGoogle Scholar
  54. 54.
    R. Chandrasekaran, X-ray and molecular modeling studies on the structure-function correlations of polysaccharides, Macromol. Symp., Vol. 140 (Wiley Online Library, 1999) pp. 17--29Google Scholar
  55. 55.
    E.R. Morris, D.A. Powell, M.J. Gidley, D.A. Rees, J. Mol. Biol. 155, 507 (1982)Google Scholar
  56. 56.
    B. Manunza, S. Deiana, M. Pintore, C. Gessa, Carbohydr. Res. 300, 85 (1997)Google Scholar
  57. 57.
    B. Manunza, S. Deiana, M. Pintore, C. Gessa, Glycoconj. J. 15, 297 (1998)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bradley W. Mansel
    • 1
    Email author
  • Amir Hossein Irani
    • 2
  • Timothy M. Ryan
    • 3
  • Duncan J. McGillivray
    • 4
    • 5
  • Hsin-Lung Chen
    • 1
  • Martin A. K. Williams
    • 2
    • 5
    • 6
  1. 1.Department of Chemical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
  3. 3.Australian SynchrotronClaytonAustralia
  4. 4.School of Chemical SciencesUniversity of AucklandAucklandNew Zealand
  5. 5.The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
  6. 6.Riddet InstituteMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations