Dynamics of sedimenting active Brownian particles

  • Jérémy Vachier
  • Marco G. MazzaEmail author
Open Access
Regular Article


We investigate the stochastic dynamics of one sedimenting active Brownian particle in three dimensions under the influence of gravity and passive fluctuations in the translational and rotational motion. We present an analytical solution of the Fokker-Planck equation for the stochastic process which allows us to describe the dynamics of one active Brownian particle in three dimensions. We address the time evolution of the density, the polarization, and the steady-state solution. We also perform Brownian dynamics simulations and study the effect of the activity of the particles on their collective motion. These results qualitatively agree with our model. Finally, we compare our results with experiments (J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)) and find very good agreement.

Graphical abstract


Flowing matter: Nonlinear Physics and Mesoscale Modeling 



Open Access funding provided by Max Planck Society.


  1. 1.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B.J. Nelson, H. Choi, Adv. Mater. 25, 5863 (2013)CrossRefGoogle Scholar
  4. 4.
    C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Condens. Matter Phys. 7, 171 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    C. Krüger, G. Klös, C. Bahr, C.C. Maass, Phys. Rev. Lett. 117, 048003 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Jin, C. Krüger, C.C. Maass, Proc. Natl. Acad. Sci. U.S.A. 114, 5089 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    B. Ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A.I. Campbell, R. Wittkowski, B. ten Hagen, H. Löwen, S.J. Ebbens, J. Chem. Phys. 147, 084905 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, C. Cottin-Bizonne, Phys. Rev. X 5, 011004 (2015)Google Scholar
  14. 14.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)CrossRefGoogle Scholar
  15. 15.
    F.J. Sevilla, M. Sandoval, Phys. Rev. E 91, 052150 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Pototsky, H. Stark, EPL 98, 50004 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    F.J. Sevilla, L.A. Gómez Nava, Phys. Rev. E 90, 022130 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    C.G. Wagner, M.F. Hagan, A. Baskaran, J. Stat. Mech. 2017, 043203 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Hermann, M. Schmidt, Soft Matter 14, 1614 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    K. Wolff, A.M. Hahn, H. Stark, Eur. Phys. J. E 36, 43 (2013)CrossRefGoogle Scholar
  21. 21.
    F.J. Sevilla, Phys. Rev. E 94, 062120 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    J. Tailleur, M.E. Cates, EPL 86, 60002 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    C. Kurzthaler, S. Leitmann, T. Franosch, Sci. Rep. 6, 36702 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    F. Ginot, A. Solon, Y. Kafri, C. Ybert, J. Tailleur, C. Cottin-Bizonne, arXiv:1805.08681 (2018)Google Scholar
  25. 25.
    R.W. Nash, R. Adhikari, J. Tailleur, M.E. Cates, Phys. Rev. Lett. 104, 258101 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    N.V. Kampen, Stochastic Processes in Physics and Chemistry, third edition (North Holland, 2007)Google Scholar
  27. 27.
    C. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, Heidelberg, 1983)Google Scholar
  28. 28.
    H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, Heidelberg, 1984)Google Scholar
  29. 29.
    T.D. Frank, Nonlinear Fokker-Planck Equations (Springer-Verlag, Berlin, Heidelberg, 2005)Google Scholar
  30. 30.
    G.A. Pavliotis, Stochastic Processes and Applications Diffusion Processes, the Fokker-Planck and Langevin Equations (Springer-Verlag, New York, 2014)Google Scholar
  31. 31.
    V. Ilyin, I. Procaccia, A. Zagorodny, Condens. Matter Phys. 16, 13004 (2013)CrossRefGoogle Scholar
  32. 32.
    H. Stark, Eur. Phys. J. ST 225, 2369 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Cates, J. Tailleur, EPL 101, 20010 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S. Redner, A Guide to First-passage Processes (Cambridge University Press, 2001)Google Scholar
  35. 35.
    A. Sommerfeld, Partial Differential Equations in Physics, Vol. 1 (Academic Press, 1949)Google Scholar
  36. 36.
    A.D. Aleksandrov, M.A. Lavrent’ev, Mathematics: Its Content, Methods and Meaning (Courier Corporation, 1999)Google Scholar
  37. 37.
    D.R. Cox, The Theory of Stochastic Processes (Routledge, 2017)Google Scholar
  38. 38.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)ADSCrossRefGoogle Scholar
  39. 39.
    S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    G.K. Batchelor, J. Fluid Mech. 52, 245 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    P.N. Segrè, E. Herbolzheimer, P.M. Chaikin, Phys. Rev. Lett. 79, 2574 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    R. Piazza, Rep. Prog. Phys. 77, 056602 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  44. 44.
    A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    J. Perrin, Ann. Chim. Phys 8, 1 (1909)Google Scholar
  46. 46.
    V.I. Klyatskin, Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Vol. 1 (Springer International Publishing, Switzerland, 2015)Google Scholar
  47. 47.
    V.V. Konotop, L. Vasquez, Nonlinear Random Waves (World Scientific, Singapore, 1994)Google Scholar
  48. 48.
    T.D. Frank, Phys. Rev. E 71, 031106 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    E.A. Novikov, JETP 20, 1290 (1965)ADSGoogle Scholar
  50. 50.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, 2002)Google Scholar
  51. 51.
    W.T. Coffey, Y.P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, Vol. 27 (World Scientific, 2012)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  2. 2.Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical SciencesLoughborough UniversityLoughborough, LeicestershireUK

Personalised recommendations