Determining phoretic mobilities with Onsager’s reciprocal relations: Electro- and thermophoresis revisited
Part of the following topical collections:
Abstract.
We use a hydrodynamic reciprocal approach to phoretic motion to derive general expressions for the electrophoretic and thermophoretic mobility of weakly charged colloids in aqueous electrolyte solutions. Our approach shows that phoretic motion can be understood in terms of the interfacial transport of thermodynamic excess quantities that arises when a colloid is kept stationary inside a bulk fluid flow. The obtained expressions for the mobilities are extensions of previously known results as they can account for different hydrodynamic boundary conditions at the colloidal surface, irrespective of how the colloid-fluid interaction range compares to the colloidal radius.
Graphical abstract
Keywords
Topical issue: Thermal Non-Equilibrium Phenomena in Soft MatterReferences
- 1.M.v. Smoluchowski, Bull. Int. Acad. Sci. Crac. 3, 184 (1903)Google Scholar
- 2.E. Hückel, Phys. Z. 25, 204 (1924)Google Scholar
- 3.B. Derjaguin, Y. Yalamov, J. Colloid Sci. 20, 555 (1965)CrossRefGoogle Scholar
- 4.E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981)ADSCrossRefGoogle Scholar
- 5.J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989)CrossRefGoogle Scholar
- 6.J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
- 7.A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004)CrossRefGoogle Scholar
- 8.A. Ajdari, L. Bocquet, Phys. Rev. Lett. 96, 186102 (2006)ADSCrossRefGoogle Scholar
- 9.A. Würger, Phys. Rev. Lett. 98, 138301 (2007)ADSCrossRefGoogle Scholar
- 10.J.K. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)CrossRefGoogle Scholar
- 11.A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)ADSCrossRefGoogle Scholar
- 12.J.F. Brady, J. Fluid Mech. 667, 216 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 13.S. Semenov, M. Schimpf, J. Phys. Chem. B 119, 3510 (2015)CrossRefGoogle Scholar
- 14.J. Morthomas, A. Würger, J. Phys.: Condens. Matter 21, 035103 (2009)ADSGoogle Scholar
- 15.P. Gaspard, R. Kapral, J. Chem. Phys. 148, 134104 (2018)ADSCrossRefGoogle Scholar
- 16.R. Piazza, J. Phys.: Condens. Matter 16, S4195 (2004)ADSGoogle Scholar
- 17.J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)CrossRefGoogle Scholar
- 18.J. Burelbach, D. Frenkel, I. Pagonabarraga, E. Eiser, Eur. Phys. J. E 41, 7 (2018)CrossRefGoogle Scholar
- 19.S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Corporation, 2013)Google Scholar
- 20.R. Barber, D. Emerson, Analytical Solution of Low Reynolds Number Slip Flow Past a Sphere (Council for the Central Laboratory of the Research Councils, 2000)Google Scholar
- 21.N.V. Churaev, B.V. Derjaguin, V.M. Muller, Surface Forces (Consultants Bureau, New York, 1987)Google Scholar
- 22.S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)ADSCrossRefGoogle Scholar
- 23.J. Morthomas, A. Würger, Eur. Phys. J. E 27, 425 (2008)CrossRefGoogle Scholar
- 24.L. Onsager, Phys. Rev. Lett. 37, 405 (1931)ADSGoogle Scholar
- 25.L. Onsager, Phys. Rev. Lett. 38, 2265 (1931)ADSGoogle Scholar
- 26.J. Burelbach, PhD Thesis, University of Cambridge (2018) https://doi.org/10.17863/CAM.21479
- 27.L. Landau, E. Lifshitz, Fluid Mechanics (London, 1959)Google Scholar
- 28.J. Burelbach, D.B. Brückner, D. Frenkel, E. Eiser, Soft Matter 14, 7446 (2018)ADSCrossRefGoogle Scholar
- 29.R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)ADSGoogle Scholar
- 30.A. Würger, Rep. Prog. Phys. 73, 126601 (2010)ADSCrossRefGoogle Scholar
- 31.S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005)CrossRefGoogle Scholar
- 32.L.D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, J. Sykes, Electrodynamics of Continuous Media, Vol. 8 (Elsevier, 2013)Google Scholar
- 33.A. Würger, Phys. Rev. Lett. 101, 108302 (2008)ADSCrossRefGoogle Scholar
- 34.S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 2006, 19678 (2006)ADSCrossRefGoogle Scholar
- 35.M. Reichl, PhD Thesis, Ludwig Maximilian University of Munich (2014)Google Scholar
- 36.L. Galla, A.J. Meyer, A. Spiering, A. Sischka, M. Mayer, A.R. Hall, P. Reimann, D. Anselmetti, Nano Lett. 14, 4176 (2014)ADSCrossRefGoogle Scholar
- 37.N. Takeyama, K. Nakashima, J. Solut. Chem. 17, 305 (1988)CrossRefGoogle Scholar
Copyright information
© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019