Advertisement

Conformational statistics of randomly branching double-folded ring polymers

  • Angelo RosaEmail author
  • Ralf Everaers
Regular Article
  • 7 Downloads

Abstract.

The conformations of topologically constrained double-folded ring polymers can be described as wrappings of randomly branched primitive trees. We extend previous work on the tree statistics under different (solvent) conditions to explore the conformational statistics of double-folded rings in the limit of tight wrapping. In particular, we relate the exponents characterizing the ring statistics to those describing the primitive trees and discuss the distribution functions \(p(\overrightarrow{r}\vert\ell)\) and \(p(L\vert\ell)\) for the spatial distance, \(\overrightarrow{r}\), and tree contour distance, L, between monomers as a function of their ring contour distance, \(\ell\).

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    A.R. Khokhlov, S.K. Nechaev, Phys. Lett. A 112, 156 (1985)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Rubinstein, Phys. Rev. Lett. 57, 3023 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    S.P. Obukhov, M. Rubinstein, T. Duke, Phys. Rev. Lett. 73, 1263 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    A.Y. Grosberg, Soft Matter 10, 560 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. Rosa, R. Everaers, Phys. Rev. Lett. 112, 118302 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    J. Smrek, A.Y. Grosberg, J. Phys.: Condens. Matter 27, 064117 (2015)ADSGoogle Scholar
  7. 7.
    D. Michieletto, Soft Matter 12, 9485 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    B. Alberts, Molecular Biology of the Cell, 5th edition (Garland Science, New York, 2007)Google Scholar
  9. 9.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986). Google Scholar
  10. 10.
    A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994)Google Scholar
  11. 11.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003)Google Scholar
  12. 12.
    J. Isaacson, T.C. Lubensky, J. Phys. (Paris) Lett. 41, L469 (1980)CrossRefGoogle Scholar
  13. 13.
    M. Daoud, J.F. Joanny, J. Phys. (Paris) 42, 1359 (1981)CrossRefGoogle Scholar
  14. 14.
    A.M. Gutin, A.Y. Grosberg, E.I. Shakhnovich, Macromolecules 26, 1293 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    R. Everaers, A.Y. Grosberg, M. Rubinstein, A. Rosa, Soft Matter 13, 1223 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    B.H. Zimm, W.H. Stockmayer, J. Chem. Phys. 17, 1301 (1949)ADSCrossRefGoogle Scholar
  17. 17.
    P.-G. De Gennes, Biopolymers 6, 715 (1968)CrossRefGoogle Scholar
  18. 18.
    G. Parisi, N. Sourlas, Phys. Rev. Lett. 46, 871 (1981)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Rosa, R. Everaers, Phys. Rev. E 95, 012117 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A. Rosa, R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Rosa, R. Everaers, J. Chem. Phys. 145, 164906 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kapnistos et al., Nat. Mater. 7, 997 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D. Michieletto, D. Marenduzzo, E. Orlandini, M.S. Turner, Polymers 9, 349 (2017)CrossRefGoogle Scholar
  24. 24.
    M.E. Cates, J.M. Deutsch, J. Phys. (Paris) 47, 2121 (1986)CrossRefGoogle Scholar
  25. 25.
    T. Ge, S. Panyukov, M. Rubinstein, Macromolecules 49, 708 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    A. Grosberg, Y. Rabin, S. Havlin, A. Neer, Europhys. Lett. 23, 373 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    A. Rosa, R. Everaers, Plos Comput. Biol. 4, e1000153 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    T. Vettorel, A.Y. Grosberg, K. Kremer, Phys. Biol. 6, 025013 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Mirny, Chromosome Res. 19, 37 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Lang, Macromolecules 46, 1158 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    J. Smrek, A.Y. Grosberg, ACS Macro Lett. 5, 750 (2016)CrossRefGoogle Scholar
  32. 32.
    E.J. Janse van Rensburg, N. Madras, J. Phys. A: Math. Gen. 25, 303 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    S. Redner, J. Phys. A: Math. Gen. 13, 3525 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    J. des Cloizeaux, G. Jannink, Polymers in Solution (Oxford University Press, Oxford, 1989)Google Scholar
  35. 35.
    M.E. Fisher, J. Chem. Phys. 44, 616 (1966)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Pincus, Macromolecules 9, 386 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    O. Kratky, G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949)CrossRefGoogle Scholar
  38. 38.
    J.P. Wittmer, H. Meyer, J. Baschnagel, A. Johner, S. Obukhov, L. Mattioni, M. Müller, A.N. Semenov, Phys. Rev. Lett. 93, 147801 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    W.A. Seitz, D.J. Klein, J. Chem. Phys. 75, 5190 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.F. Flannery, Numerical Recipes in Fortran, 2nd edition (Cambridge University Press, Cambridge, 1992)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sissa (Scuola Internazionale Superiore di Studi Avanzati)TriesteItaly
  2. 2.Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique and Centre Blaise PascalLyonFrance

Personalised recommendations