Advertisement

Thermalization of plastic flow versus stationarity of thermomechanical equilibrium in SGR theory

  • Robert S. Hoy
Regular Article
  • 16 Downloads

Abstract.

We discuss issues related to thermalization of plastic flow in the context of soft glassy rheology (SGR) theory. An apparent problem with the theory in its current form is that the stationarity of thermomechanical equilibrium obtained by requiring that its flow rule satisfy detailed balance in the absence of applied deformation requires plastic flow to be athermal. This prevents proper application of SGR to small-molecule and polymer glasses where plastic flow is often well thermalized. Clearly, one would like to have a SGR-like theory of thermalized plastic flow that satisfies stationarity. We discuss reasons why such a theory could prove very useful and clarify obstacles that must be overcome in order to develop it.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics and Mesoscale Modeling 

References

  1. 1.
    M. Tsamados, A. Tanguy, C. Goldenberg, J.L. Barrat, Phys. Rev. E 80, 026112 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. Riggleman, J.F. Douglas, J.J. de Pablo, Soft Matter 6, 292 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    M.L. Manning, A.J. Liu, Phys. Rev. Lett. 107, 108302 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    S.S. Schoenholz, A.J. Liu, R.A. Riggleman, J. Rottler, Phys. Rev. X 4, 031014 (2014)Google Scholar
  5. 5.
    D. Rodney, T. Schroder, Eur. Phys. J. E. 34, 100 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Swayamjyoti, J.F. Löffler, P.M. Derlet, Phys. Rev. B 89, 224201 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Swayamjyoti, J.F. Löffler, P.M. Derlet, Phys. Rev. B 93, 144202 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma, Proc. Natl. Acad. Sci. U.S.A. 111, 14052 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S. Patinet, D. Vandembroucq, M.L. Falk, Phys. Rev. Lett. 117, 045501 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Langer, Phys. Rev. E 70, 041502 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Langer, Phys. Rev. E 77, 021502 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    P. Sollich, Phys. Rev. E 58, 738 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    S.M. Fielding, P. Sollich, M.E. Cates, J. Rheol. 44, 323 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    E. Bouchbinder, J.S. Langer, Phys. Rev. E 80, 031131 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    E. Bouchbinder, J.S. Langer, Phys. Rev. E 80, 031132 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.S. Langer, T. Egami, Phys. Rev. E 86, 011502 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    P. Sollich, M.E. Cates, Phys. Rev. E 85, 031127 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    E. Bouchbinder, J.S. Langer, Soft Matter 9, 8786 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    I. Fuereder, P. Ilg, Phys. Rev. E 88, 042134 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Proc. Natl. Acad. Sci. U.S.A. 105, 14769 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, T. Egami, Phys. Rev. Lett. 105, 205502 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A. Marruzzo, W. Schirmacher, A. Fratalocchi, G. Ruocco, Sci. Rep. 3, 1407 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    E.D. Cubuk et al., Science 358, 1033 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Barrat, Physica A 504, 20 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    T. Ree, H. Eyring, J. Appl. Phys. 26, 793 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    C.E. Maloney, D.J. Lacks, Phys. Rev. E 73, 061106 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Fan, T. Iwashita, T. Egami, Nat. Commun. 5, 5083 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Fan, T. Iwashita, T. Egami, Nat. Commun. 8, 15417 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    S. Merabia, F. Detcheverry, EPL 116, 46003 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R.S. Hoy, Phys. Rev. E 96, 063001 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Bouchard, J. Phys. I 2, 1705 (1992)Google Scholar
  34. 34.
    C. Monthus, J.P. Bouchard, J. Phys. A: Math. Gen. 14, 3847 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
  36. 36.
    C.B. Roth (Editor), Polymer Glasses (CRC Press, 2016)Google Scholar
  37. 37.
    J. Lu, G. Ravichandran, W.L. Johnson, Acta Mater. 51, 3429 (2003)CrossRefGoogle Scholar
  38. 38.
    W.L. Johnson, J. Lu, M.D. Demetriou, Intermetallics 10, 1039 (2002)CrossRefGoogle Scholar
  39. 39.
    H.N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, Science 323, 232 (2008)Google Scholar
  40. 40.
    B. Bending, K. Christison, J. Ricci, M.D. Ediger, Macromolecules 47, 800 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    G.T. Barkema, N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    P. Hebraud, F. Lequeux, Phys. Rev. Lett. 81, 2934 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95, 195501 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    A. Dequidt, L. Conca, J. Delannoy, P. Sotta, F. Lequeux, D.R. Long, Macromolecules 49, 9148 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    J.P. Bouchard, S. Gualdi, M. Tarzia, F. Zamponi, Soft Matter 12, 1230 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    P.M. Derlet, R. Maass, Philos. Mag. 94, 2776 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    E. Agoritsas, E. Bertin, K. Martens, J. Barrat, Eur. Phys. J. E 38, 71 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations