Advertisement

Capillarity-driven migration of small objects: A critical review

  • Jianlin LiuEmail author
  • Shanpeng Li
Topical Review
  • 207 Downloads

Abstract.

The phenomena on the capillarity-driven migration of small objects are full of interest for both scientific and engineering communities, and a critical review is thereby presented. The small objects mentioned here deal with the non-deformable objects, such as particles, rods, disks and metal sheets; and besides them, the soft objects are considered, such as droplets and bubbles. Two types of interfaces are analyzed, i.e., the solid-fluid interface and the fluid-fluid interface. Due to the easily deformable properties of the soft objects and distorted interfacial shapes induced by small objects, a more convenient way to obtain the driving force is through the potential energy of the system. The asymmetric factors causing the object migration include the asymmetric configuration of the interface, and the difference between the interfacial tensions. Finally, a simple outlook on the potential applications of small object migration is made. These behaviors may cast new light on the design of microfluidics and new devices, environment cleaning, oil and gas displacement and mineral industries.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    J. Jurin, Philos. Trans. R. Soc. Lond. 30, 739 (1718)Google Scholar
  2. 2.
    S. Liu, S. Li, J. Liu, Eur. Phys. J. E 41, 46 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    D. Quéré, Physica A 313, 32 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Q. Yuan, Y.P. Zhao, Phys. Rev. Lett. 104, 246101 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Q. Yuan, Y.P. Zhao, Proc. R. Soc. A 468, 310 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Yang, Q. Yuan, Y.P. Zhao, Int. J. Heat Mass Transfer 118, 201 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Otten, S. Herminghaus, Langmuir 20, 2405 (2004)CrossRefGoogle Scholar
  9. 9.
    W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)CrossRefGoogle Scholar
  10. 10.
    D.L. Hu, B. Chan, J.W. Bush, Nature 424, 663 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J. Liu, J. Sun, Y. Mei, Appl. Phys. Lett. 104, 231607 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    C.W. Wu, X.Q. Kong, D. Wu, Phys. Rev. E 76, 017301 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    N.J. Mlot, C.A. Tovey, D.L. Hu, Proc. Natl. Acad. Sci. U.S.A. 108, 7669 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Prakash, D. Quéré, J.W. Bush, Science 320, 931 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Li et al., J. Mech. Behav. Biomed. 77, 331 (2018)CrossRefGoogle Scholar
  16. 16.
    K.K. Lau et al., Nano Lett. 3, 1701 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    L. Zhai et al., Nano Lett. 4, 1349 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    E. Hosono et al., J. Am. Chem. Soc. 127, 13458 (2005)CrossRefGoogle Scholar
  19. 19.
    T. Onda et al., Langmuir 12, 2125 (1996)CrossRefGoogle Scholar
  20. 20.
    J.L. Liu, X.Q. Feng, Acta Mech. Sin. 28, 928 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    B. Roman, J. Bico, J. Phys.: Condens. Matter 22, 493101 (2010)Google Scholar
  22. 22.
    X.Y. Ji et al., Appl. Phys. Lett. 100, 263104 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    N. Chakrapani et al., Proc. Natl. Acad. Sci. U.S.A. 101, 4009 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Liu et al., J. Phys. D Appl. Phys. 40, 5564 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    É. Lorenceau, D. Quéré, J. Fluid Mech. 510, 29 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    C. Lv et al., Phys. Rev. Lett. 113, 026101 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    L. Jian-Lin et al., Chin. Phys. Lett. 24, 3210 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    P. Renvoisé et al., EPL 86, 64003 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    J. Ju et al., Nat. Commun. 3, 1247 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Luo, Langmuir 31, 11809 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Guo, G.H. Tang, Int. J. Heat Mass Transfer 84, 198 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Zhang et al., Small 13, 1602992 (2017)CrossRefGoogle Scholar
  33. 33.
    T. Xu et al., ACS Nano 10, 10681 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Zhou et al., Small 14, 1801335 (2018)CrossRefGoogle Scholar
  35. 35.
    Y. Zheng et al., Nature 463, 640 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    H. Bai et al., Adv. Mater. 22, 5521 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Chen et al., Sci. Rep.-UK 3, 2927 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Chen et al., Sci. Rep.-UK 6, 19978 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    C. Luo, X. Heng, M. Xiang, Langmuir 30, 8373 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Zhang, Y. Han, Langmuir 23, 6136 (2007)CrossRefGoogle Scholar
  41. 41.
    X. Heng, C. Luo, Langmuir 31, 2743 (2015)CrossRefGoogle Scholar
  42. 42.
    M.A. Rubega, Ibis 139, 488 (1997)CrossRefGoogle Scholar
  43. 43.
    H. Chen et al., Nature 532, 85 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    S. Li, J. Liu, J. Hou, Sci. Rep.-UK 6, 37888 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    C. Li et al., Angew. Chem. Int. Ed. 55, 14988 (2016)CrossRefGoogle Scholar
  46. 46.
    X.P. Zheng et al., J. Colloid Interface Sci. 323, 133 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Y.J. Yin et al., Appl. Math. Mech. 32, 533 (2011)CrossRefGoogle Scholar
  48. 48.
    L. Courbin et al., Nat. Mater. 6, 661 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    E. Chen et al., J. Adhes. Sci. Technol. 30, 2265 (2016)CrossRefGoogle Scholar
  50. 50.
    E. Chen, Q. Yuan, Y.P. Zhao, Soft Matter 14, 6198 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    Q. Yuan, Y.P. Zhao, J. Fluid Mech. 716, 171 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Q. Yuan, Y.P. Zhao, Sci. Rep.-UK 3, 1944 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    Q. Yuan, X. Huang, Y.P. Zhao, Phys. Fluids 26, 092104 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    G. Fang et al., Langmuir 24, 11651 (2008)CrossRefGoogle Scholar
  55. 55.
    Y.H. Lai, J.T. Yang, D.B. Shieh, Lab Chip 10, 499 (2010)CrossRefGoogle Scholar
  56. 56.
    L. Xu, Z. Li, S. Yao, Appl. Phys. Lett. 101, 064101 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    J.S. Lee, J.Y. Moon, J.S. Lee, Appl. Therm. Eng. 72, 104 (2014)CrossRefGoogle Scholar
  58. 58.
    Y. Lin et al., Adv. Mater. Interfaces 5, 1800962 (2018)CrossRefGoogle Scholar
  59. 59.
    C. Liu et al., Adv. Mater. 26, 6086 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    R.W. Style et al., Proc. Natl. Acad. Sci. U.S.A. 110, 12541 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    M. Zhao et al., Proc. Natl. Acad. Sci. U.S.A. 115, 1748 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    L.E. Scriven, C.V. Sternling, Nature 187, 186 (1960)ADSCrossRefGoogle Scholar
  63. 63.
    J. Thomson, Philos. Mag. 10, 330 (1855)CrossRefGoogle Scholar
  64. 64.
    N.J. Cira, A. Benusiglio, M. Prakash, Nature 519, 446 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    H. Haidara, L. Vonna, J. Schultz, J. Chem. Phys. 107, 630 (1997)ADSCrossRefGoogle Scholar
  66. 66.
    L.W. Schwartz et al., J. Eng. Math. 50, 157 (2004)CrossRefGoogle Scholar
  67. 67.
    M. Grunze, Science 283, 41 (1999)ADSCrossRefGoogle Scholar
  68. 68.
    J. Bico, D. Quere, Europhys. Lett. 51, 546 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    J. Bico, D. Quéré, J. Fluid Mech. 467, 101 (2002)ADSCrossRefGoogle Scholar
  70. 70.
    Y.S. Ryazantsev et al., J. Colloid Interface Sci. 527, 180 (2018)ADSCrossRefGoogle Scholar
  71. 71.
    J. Chen, Z. Dagan, C. Maldarelli, J. Fluid Mech. 233, 405 (1991)ADSCrossRefGoogle Scholar
  72. 72.
    N.O. Young, J.S. Goldstein, M.J. Block, J. Fluid Mech. 6, 350 (1959)ADSCrossRefGoogle Scholar
  73. 73.
    R. Sun, W.R. Hu, J. Colloid Interface Sci. 255, 375 (2002)ADSCrossRefGoogle Scholar
  74. 74.
    M. Hasan, R. Balasubramaniam, J. Thermophys. Heat Transfer 3, 87 (1989)CrossRefGoogle Scholar
  75. 75.
    A. Mazouchi, G.M. Homsy, Phys. Fluids 12, 542 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    S.K. Wilson, Phys. Fluids 5, 2064 (1993)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    A.L. Yarin, W. Liu, D.H. Reneker, J. Appl. Phys. 91, 4751 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    F. Brochard, Langmuir 5, 432 (1989)CrossRefGoogle Scholar
  79. 79.
    S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008)CrossRefGoogle Scholar
  80. 80.
    C. Gao et al., Adv. Funct. Mater. 28, 1803072 (2018)CrossRefGoogle Scholar
  81. 81.
    A.R. Parker, C.R. Lawrence, Nature 414, 33 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    S. Daniel, M.K. Chaudhury, J.C. Chen, Science 291, 633 (2001)ADSCrossRefGoogle Scholar
  83. 83.
    N. Moumen, R.S. Subramanian, J.B. McLaughlin, Langmuir 22, 2682 (2006)CrossRefGoogle Scholar
  84. 84.
    M.K. Chaudhury, G.M. Whitesides, Science 256, 1539 (1992)ADSCrossRefGoogle Scholar
  85. 85.
    P.T. Kühn, B.S. de Miranda, P. van Rijn, Adv. Mater. 27, 7401 (2015)CrossRefGoogle Scholar
  86. 86.
    B. Chandesris, U. Soupremanien, N. Dunoyer, Colloid Surf. A 434, 126 (2013)CrossRefGoogle Scholar
  87. 87.
    M. Zhang et al., Adv. Mater. 27, 5057 (2015)CrossRefGoogle Scholar
  88. 88.
    M.M. Weislogel, AIChE J. 43, 645 (1997)CrossRefGoogle Scholar
  89. 89.
    C.D. Bain, G.M. Whitesides, Langmuir 5, 1370 (1989)CrossRefGoogle Scholar
  90. 90.
    S. Deng et al., Sci. Rep.-UK 7, 45687 (2017)ADSCrossRefGoogle Scholar
  91. 91.
    S.W. Lee, D.Y. Kwok, P.E. Laibinis, Phys. Rev. E 65, 051602 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    S.W. Lee, P.E. Laibinis, J. Am. Chem. Soc. 122, 5395 (2000)CrossRefGoogle Scholar
  93. 93.
    Y. Sumino et al., Phys. Rev. E 72, 041603 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    Y. Sumino et al., Phys. Rev. Lett. 94, 068301 (2005)ADSCrossRefGoogle Scholar
  95. 95.
    F.D. Dos Santos, T. Ondarcuhu, Phys. Rev. Lett. 75, 2972 (1995)ADSCrossRefGoogle Scholar
  96. 96.
    P.G. De Gennes, Physica A 249, 196 (1998)ADSCrossRefGoogle Scholar
  97. 97.
    X. Yao et al., Soft Matter 8, 5988 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    K. Ichimura, S.K. Oh, M. Nakagawa, Science 288, 1624 (2000)ADSCrossRefGoogle Scholar
  99. 99.
    M.M. Nicolson, Math. Proc. Cambridge 45, 288 (1949)ADSCrossRefGoogle Scholar
  100. 100.
    F. Ghezzi, J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997)ADSGoogle Scholar
  101. 101.
    P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)CrossRefGoogle Scholar
  102. 102.
    R. McGorty et al., Mater. Today 13, 34 (2010)CrossRefGoogle Scholar
  103. 103.
    O.D. Velev et al., Langmuir 9, 3702 (1993)CrossRefGoogle Scholar
  104. 104.
    M. Oettel, A. Dominguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)ADSCrossRefGoogle Scholar
  105. 105.
    B.J. Park, E.M. Furst, Soft Matter 7, 7676 (2011)ADSCrossRefGoogle Scholar
  106. 106.
    M.A. Gharbi et al., Soft Matter 7, 1467 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    L.H. Ong, K.L. Yang, J. Phys. Chem. B 120, 825 (2016)CrossRefGoogle Scholar
  108. 108.
    N. Bowden et al., Science 276, 233 (1997)CrossRefGoogle Scholar
  109. 109.
    G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002)ADSCrossRefGoogle Scholar
  110. 110.
    L. Botto et al., Soft Matter 8, 9957 (2012)ADSCrossRefGoogle Scholar
  111. 111.
    N.B. Bowden et al., Accounts Chem. Res. 34, 231 (2001)CrossRefGoogle Scholar
  112. 112.
    K.D. Danov et al., J. Colloid Interface Sci. 287, 121 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    K.D. Danov, P.A. Kralchevsky, Adv. Colloid Interface Sci. 154, 91 (2010)CrossRefGoogle Scholar
  114. 114.
    D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)ADSCrossRefGoogle Scholar
  115. 115.
    B.J. Park, T. Brugarolas, D. Lee, Soft Matter 7, 6413 (2011)ADSCrossRefGoogle Scholar
  116. 116.
    S. Cappelli et al., Langmuir 33, 696 (2017)CrossRefGoogle Scholar
  117. 117.
    L.C. Bradley et al., Curr. Opin. Colloid Interface Sci. 30, 25 (2017)CrossRefGoogle Scholar
  118. 118.
    J. Lucassen, Colloid Surface 65, 131 (1992)CrossRefGoogle Scholar
  119. 119.
    S. Dasgupta, Langmuir 30, 11873 (2014)CrossRefGoogle Scholar
  120. 120.
    J.C. Loudet et al., Phys. Rev. Lett. 94, 018301 (2005)ADSCrossRefGoogle Scholar
  121. 121.
    E.A. Van Nierop, M.A. Stijnman, S. Hilgenfeldt, Europhys. Lett. 72, 671 (2005)ADSCrossRefGoogle Scholar
  122. 122.
    B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)CrossRefGoogle Scholar
  123. 123.
    J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    J.H. Lim et al., Langmuir 34, 384 (2017)CrossRefGoogle Scholar
  125. 125.
    Z. Zhang et al., J. Am. Chem. Soc. 133, 392 (2010)CrossRefGoogle Scholar
  126. 126.
    L. Botto et al., Soft Matter 8, 4971 (2012)ADSCrossRefGoogle Scholar
  127. 127.
    E.P. Lewandowski et al., Langmuir 26, 15142 (2010)CrossRefGoogle Scholar
  128. 128.
    J.Y. Wang et al., J. Am. Chem. Soc. 134, 5801 (2011)CrossRefGoogle Scholar
  129. 129.
    I.B. Liu et al., Proc. Natl. Acad. Sci. U.S.A. 112, 6336 (2015)ADSCrossRefGoogle Scholar
  130. 130.
    D.Y.C. Chan, J.D. Henry jr., L.R. White, J. Colloid Interface Sci. 79, 410 (1981)ADSCrossRefGoogle Scholar
  131. 131.
    A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2, 435 (2007)ADSCrossRefGoogle Scholar
  132. 132.
    G. Soligno, M. Dijkstra, R. van Roij, Phys. Rev. Lett. 116, 258001 (2016)ADSCrossRefGoogle Scholar
  133. 133.
    T.G. Anjali, M.G. Basavaraj, Langmuir 33, 791 (2017)CrossRefGoogle Scholar
  134. 134.
    H.K. Lee, Chem. Mater. 29, 6563 (2017)CrossRefGoogle Scholar
  135. 135.
    N. Bowden et al., J. Am. Chem. Soc. 121, 5373 (1999)CrossRefGoogle Scholar
  136. 136.
    N. Bowden, S.R. Oliver, G.M. Whitesides, J. Phys. Chem. B 104, 2714 (2000)CrossRefGoogle Scholar
  137. 137.
    N. Bowden et al., Langmuir 17, 1757 (2001)CrossRefGoogle Scholar
  138. 138.
    B.A. Grzybowski et al., J. Phys. Chem. B 105, 404 (2001)CrossRefGoogle Scholar
  139. 139.
    J.A. Ferrar et al., Soft Matter 14, 3902 (2018)ADSCrossRefGoogle Scholar
  140. 140.
    S.M. Kang et al., Soft Matter 12, 5847 (2016)ADSCrossRefGoogle Scholar
  141. 141.
    H. Wu, N. Bowden, G.M. Whitesides, Appl. Phys. Lett. 75, 3222 (1999)ADSCrossRefGoogle Scholar
  142. 142.
    A.B.D. Brown, C.G. Smith, A.R. Rennie, Phys. Rev. E 62, 951 (2000)ADSCrossRefGoogle Scholar
  143. 143.
    Y. Yu et al., Langmuir 23, 10546 (2007)CrossRefGoogle Scholar
  144. 144.
    E.P. Lewandowski et al., Soft Matter 5, 886 (2009)ADSCrossRefGoogle Scholar
  145. 145.
    L. Yao et al., Soft Matter 9, 779 (2013)ADSCrossRefGoogle Scholar
  146. 146.
    M. Frenkel et al., Langmuir 34, 6388 (2018)CrossRefGoogle Scholar
  147. 147.
    I. Legchenkova et al., Surf. Innov. 6, 231 (2018)CrossRefGoogle Scholar
  148. 148.
    D.L. Hu, J.W. Bush, Nature 437, 733 (2005)ADSCrossRefGoogle Scholar
  149. 149.
    V.M. Ortega-Jiménez, S. Arriaga-Ramirez, R. Dudley, Biol. Lett. 12, 20160279 (2016)CrossRefGoogle Scholar
  150. 150.
    S. Li et al., Colloid Surf. A 469, 252 (2015)ADSCrossRefGoogle Scholar
  151. 151.
    L. Yao et al., J. Colloid Interface Sci. 449, 436 (2015)ADSCrossRefGoogle Scholar
  152. 152.
    I.B. Liu et al., Phys. Rev. Fluids 2, 100501 (2017)ADSCrossRefGoogle Scholar
  153. 153.
    N. Sharifi-Mood, I.B. Liu, K.J. Stebe, Soft Matter 11, 6768 (2015)ADSCrossRefGoogle Scholar
  154. 154.
    M. Cavallaro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 20923 (2011)ADSCrossRefGoogle Scholar
  155. 155.
    I.B. Liu, N. Sharifi-Mood, K.J. Stebe, Philos. Trans. R. Soc. A 374, 20150133 (2016)ADSCrossRefGoogle Scholar
  156. 156.
    J. Liu, S. Li, J. Hou, Soft Matter 12, 2221 (2016)ADSCrossRefGoogle Scholar
  157. 157.
    S.J. Sowerby et al., J. Microsc. 244, 230 (2011)CrossRefGoogle Scholar
  158. 158.
    E.P. Lewandowski et al., Langmuir 24, 9302 (2008)CrossRefGoogle Scholar
  159. 159.
    G. Falkovich et al., Nature 435, 1045 (2005)ADSCrossRefGoogle Scholar
  160. 160.
    A. Würger, Phys. Rev. E 74, 041402 (2006)ADSMathSciNetCrossRefGoogle Scholar
  161. 161.
    X. Dou, S. Li, J. Liu, Appl. Phys. Lett. 111, 081602 (2017)ADSCrossRefGoogle Scholar
  162. 162.
    P.A. Kralchevsky, N.D. Denkov, Curr. Opin. Colloid Inerface Sci. 6, 383 (2001)CrossRefGoogle Scholar
  163. 163.
    C. Zeng et al., Soft Matter 8, 8582 (2012)ADSCrossRefGoogle Scholar
  164. 164.
    P.Y. Kim et al., Soft Matter 14, 2131 (2018)ADSCrossRefGoogle Scholar
  165. 165.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 33, 219 (2010)CrossRefGoogle Scholar
  166. 166.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Soft Matter 7, 4189 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Phys. Rev. E 84, 031401 (2011)ADSCrossRefGoogle Scholar
  168. 168.
    M. Lee, M. Xia, B.J. Park, Materials 9, 138 (2016)ADSCrossRefGoogle Scholar
  169. 169.
    P.F. Noble et al., J. Am. Chem. Soc. 126, 8092 (2004)CrossRefGoogle Scholar
  170. 170.
    N. Li, arXiv:1602.07179 (2016)Google Scholar
  171. 171.
    N. Li et al., Langmuir 33, 600 (2016)CrossRefGoogle Scholar
  172. 172.
    C. Van Der Wel et al., Sci. Rep.-UK 6, 32825 (2016)ADSCrossRefGoogle Scholar
  173. 173.
    A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)ADSCrossRefGoogle Scholar
  174. 174.
    J. Léandri, A. Würger, J. Colloid Interface Sci. 405, 249 (2013)ADSCrossRefGoogle Scholar
  175. 175.
    C. Blanc et al., Phys. Rev. Lett. 111, 058302 (2013)ADSCrossRefGoogle Scholar
  176. 176.
    P. Galatola, J.B. Fournier, Soft Matter 10, 2197 (2014)ADSCrossRefGoogle Scholar
  177. 177.
    P. Galatola, Phys. Rev. E 93, 022604 (2016)ADSCrossRefGoogle Scholar
  178. 178.
    D. Ershov et al., Proc. Natl. Acad. Sci. U.S.A. 110, 9220 (2013)ADSCrossRefGoogle Scholar
  179. 179.
    L. Rayleigh, Proc. R. Soc. London 47, 364 (1889)Google Scholar
  180. 180.
    S. Nakata et al., Langmuir 13, 4454 (1997)CrossRefGoogle Scholar
  181. 181.
    Y. Hayashima, M. Nagayama, S. Nakata, J. Phys. Chem. B 105, 5353 (2001)CrossRefGoogle Scholar
  182. 182.
    M.I. Kohira et al., Langmuir 17, 7124 (2001)CrossRefGoogle Scholar
  183. 183.
    S. Nakata, K. Matsuo, Langmuir 21, 982 (2005)CrossRefGoogle Scholar
  184. 184.
    N.J. Suematsu et al., J. Phys. Chem. C 114, 9876 (2010)CrossRefGoogle Scholar
  185. 185.
    N.J. Suematsu et al., Langmuir 30, 8101 (2014)CrossRefGoogle Scholar
  186. 186.
    M. Frenkel et al., Appl. Phys. Lett. 110, 131604 (2017)ADSCrossRefGoogle Scholar
  187. 187.
    K. Nagai et al., Phys. Rev. E 71, 065301 (2005)ADSCrossRefGoogle Scholar
  188. 188.
    S. Oshima et al., Anal. Sci. 30, 441 (2014)CrossRefGoogle Scholar
  189. 189.
    C. Luo, H. Li, X. Liu, J. Micromech. Microeng. 18, 067002 (2008)ADSCrossRefGoogle Scholar
  190. 190.
    E. Bormashenko et al., J. Phys. Chem. C 119, 9910 (2015)CrossRefGoogle Scholar
  191. 191.
    A. Musin et al., J. Colloid Interface Sci. 479, 182 (2016)ADSCrossRefGoogle Scholar
  192. 192.
    R. Sharma, S.T. Chang, O.D. Velev, Langmuir 28, 10128 (2012)CrossRefGoogle Scholar
  193. 193.
    M. Su, Appl. Phys. Lett. 90, 144102 (2007)ADSCrossRefGoogle Scholar
  194. 194.
    M.M. Hanczyc, Philos. Trans. R. Soc. B 366, 2885 (2011)CrossRefGoogle Scholar
  195. 195.
    A. Diguet et al., Angew. Chem. Int. Ed. 48, 9281 (2009)CrossRefGoogle Scholar
  196. 196.
    S. Tanaka, Y. Sogabe, S. Nakata, Phys. Rev. E 91, 032406 (2015)ADSCrossRefGoogle Scholar
  197. 197.
    S. Miura et al., Langmuir 30, 7977 (2014)CrossRefGoogle Scholar
  198. 198.
    M.M. Hanczyc et al., J. Am. Chem. Soc. 129, 9386 (2007)CrossRefGoogle Scholar
  199. 199.
    T. Toyota et al., J. Am. Chem. Soc. 131, 5012 (2009)CrossRefGoogle Scholar
  200. 200.
    G. Zhao, M. Pumera, Lab Chip 14, 2818 (2014)CrossRefGoogle Scholar
  201. 201.
    I. Lagzi et al., J. Am. Chem. Soc. 132, 1198 (2010)CrossRefGoogle Scholar
  202. 202.
    A. Suzuki, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012) p. 2180,  https://doi.org/10.1109/IROS.2012.6385738
  203. 203.
    C.C. Maass et al., Annu. Rev. Condens. Matter Phys. 7, 171 (2016)ADSCrossRefGoogle Scholar
  204. 204.
    C. Jin, C. Krüger, C.C. Maass, Proc. Natl. Acad. Sci. U.S.A. 114, 5089 (2017)ADSCrossRefGoogle Scholar
  205. 205.
    H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)CrossRefGoogle Scholar
  206. 206.
    M. Paven et al., Adv. Funct. Mater. 26, 3199 (2016)CrossRefGoogle Scholar
  207. 207.
    N. Kavokine et al., Angew. Chem. Int. Ed. 55, 11183 (2016)CrossRefGoogle Scholar
  208. 208.
    C. Song et al., Soft Matter 10, 2679 (2014)ADSCrossRefGoogle Scholar
  209. 209.
    G.M. Whitesides, Nature 442, 368 (2006)ADSCrossRefGoogle Scholar
  210. 210.
    E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014)ADSCrossRefGoogle Scholar
  211. 211.
    A. Terray, J. Oakey, D.W. Marr, Science 296, 1841 (2002)ADSCrossRefGoogle Scholar
  212. 212.
    A.G. Yiotis et al., AICHE J. 50, 2721 (2004)CrossRefGoogle Scholar
  213. 213.
    R. Farajzadeh et al., Adv. Colloid Interface Sci. 183, 1 (2012)CrossRefGoogle Scholar
  214. 214.
    H. Zhang, A. Nikolov, D. Wasan, Energy Fuel 28, 3002 (2014)CrossRefGoogle Scholar
  215. 215.
    L. Wen, Y. Tian, L. Jiang, Angew. Chem. Int. Ed. 54, 3387 (2015)CrossRefGoogle Scholar
  216. 216.
    B.J. Shean, J.J. Cilliers, Int. J. Min. Process. 100, 57 (2011)CrossRefGoogle Scholar
  217. 217.
    M.S. Reddy et al., J. Hazard. Mater. 147, 1051 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, College of Pipeline and Civil EngineeringChina University of Petroleum (East China)QingdaoChina

Personalised recommendations