Advertisement

Stress and bubble pressure response of wet foam to continuous and oscillatory sinusoidal shear

  • Zefeng Jing
  • Chenchen Feng
  • Shuzhong Wang
  • Donghai Xu
Regular Article

Abstract.

Wet foam, as a typical multiphase soft material, has complex spatial structure. Foam quality (i.e., gas fraction of a foam fluid), one of fundamental structure parameters of a foam system, generally has a significant influence on the mechanical response of the wet foam to the continuous and oscillatory shear. This study shows that the stress level of the wet foam, including the shear stress and the normal stress difference, rises with the foam quality. An exponential link between the yield stress of wet foam and the foam quality is demonstrated. In the oscillatory sinusoidal shear, a frequent fluctuation of the stress curve mainly occurs at the relatively higher strain rate, and the stress state in the foam is still maintained at the end of the oscillatory shear. Further, with the increase of foam quality, the loss modulus decreases when the foam does not yield, while the storage modulus as well as the loss modulus increases as the strain amplitude exceeds a certain value. Additionally, a nonlinear stress response of the wet foam is mainly attributed to the third harmonic component as the strain amplitude increases in the oscillatory shear. In the shear, the average level of bubble pressure in the foam increases with the foam quality, and it fluctuates with the strain owing to the elastic-plastic deformations of the films. Especially, in the oscillatory shear, the average bubble pressure fluctuates more frequently as the strain rate reaches a relatively higher value.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    D. Weaire, R. Höhler, S. Hutzler, Adv. Colloid Interface Sci. 247, 491 (2017)CrossRefGoogle Scholar
  2. 2.
    P.M. Ireland, G.J. Jameson, Int. J. Min. Process. 102, 78 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Luo, S. Wang, Z. Wang, Z. Jing, M. Lv, J. Pet. Sci. Eng. 120, 154 (2014)CrossRefGoogle Scholar
  4. 4.
    S. CohenAddad, R. Höhler, O. Pitois, Annu. Rev. Fluid Mech. 45, 241 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Jing, S. Wang, M. Lv, Z. Wang, X. Luo, Soft Matter 11, 2973 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    D. Weaire, Curr. Opin. Colloid Interface Sci. 13, 171 (2008)CrossRefGoogle Scholar
  7. 7.
    B. Dollet, C. Raufaste, C. R. Phys. 15, 731 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Cohen Addad, R. Höhler, Curr. Opin. Colloid Interface Sci. 19, 536 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. Jing, S. Wang, M. Lv, Z. Wang, X. Luo, J. Fluids Eng. Trans. ASME 137, 041206 (2015)CrossRefGoogle Scholar
  10. 10.
    N.P. Kruyt, J. Appl. Mech. 74, 560 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    G. Debregeas, H. Tabuteau, J.-M. Di Meglio, Phys. Rev. Lett. 87, 178305 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    G. Katgert, A. Latka, M.E. Möbius, M. van Hecke, Phys. Rev. E 79, 066318 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S. Costa, S. Cohen-Addad, A. Salonen, R. Höhler, Soft Matter 9, 886 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A. Kabla, G. Debregeas, J. Fluid Mech. 587, 23 (2007)ADSMathSciNetGoogle Scholar
  15. 15.
    A. Kabla, J. Scheibert, G. Debregeas, J. Fluid Mech. 587, 45 (2007)ADSMathSciNetGoogle Scholar
  16. 16.
    C. Li, Y. Huang, X. Sun, R. Gao, F. Zeng, P. Tontiwachwuthikul, Z. Liang, Chem. Eng. Sci. 170, 720 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Kovscek, T. Patzek, C. Radke, Chem. Eng. Sci. 50, 3783 (1995)CrossRefGoogle Scholar
  18. 18.
    B. Dollet, F. Graner, J. Fluid Mech. 585, 181 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    K.A. Brakke, Exp. Math. 1, 141 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A.M. Kraynik, D.A. Reinelt, F. van Swol, Phys. Rev. Lett. 93, 208301 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Jing, S. Wang, Z. Wang, Langmuir 32, 2419 (2016)CrossRefGoogle Scholar
  22. 22.
    I.B. Ivanov, A.S. Dimitrov, A.D. Nikolov, N.D. Denkov, P.A. Kralchevsky, J. Colloid Interface Sci. 151, 446 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Cox, E.L. Whittick, Eur. Phys. J. E 21, 49 (2006)CrossRefGoogle Scholar
  24. 24.
    G. Marion, S. Sahnoun, B. Mendiboure, C. Dicharry, J. Lachaise, Trends Colloid Interface Sci. VI, 145 (1992)Google Scholar
  25. 25.
    C. Kalelkar, A. Lele, S. Kamble, Phys. Rev. E 81, 031401 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    B.S. Murray, R. Ettelaie, Curr. Opin. Colloid Interface Sci. 9, 314 (2004)CrossRefGoogle Scholar
  27. 27.
    T.G. Mason, J. Bibette, D.A. Weitz, J. Colloid Interface Sci. 179, 439 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    A. Saintjalmes, D.J. Durian, J. Rheol. 43, 1411 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    S. Marze, R.M. Guillermic, A. Saintjalmes, Soft Matter 5, 1937 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    F. Bolton, D. Weaire, Phys. Rev. Lett. 65, 3449 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, S. Fielding, Eur. Phys. J. E 27, 309 (2008)CrossRefGoogle Scholar
  32. 32.
    D. Weaire, R. Phelan, J. Phys.: Condens. Matter 8, 9519 (1996)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zefeng Jing
    • 1
  • Chenchen Feng
    • 1
  • Shuzhong Wang
    • 1
  • Donghai Xu
    • 1
  1. 1.Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’an, ShaanxiChina

Personalised recommendations