Advertisement

Effective squirmer models for self-phoretic chemically active spherical colloids

  • M. N. PopescuEmail author
  • W. E. Uspal
  • Z. Eskandari
  • M. Tasinkevych
  • S. Dietrich
Open Access
Regular Article
  • 38 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Various aspects of self-motility of chemically active colloids in Newtonian fluids can be captured by simple models for their chemical activity plus a phoretic-slip hydrodynamic boundary condition on their surface. For particles of simple shapes (e.g., spheres) --as employed in many experimental studies-- which move at very low Reynolds numbers in an unbounded fluid, such models of chemically active particles effectively map onto the well studied so-called hydrodynamic squirmers (S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)). Accordingly, intuitively appealing analogies of “pusher/puller/neutral” squirmers arise naturally. Within the framework of self-diffusiophoresis we illustrate the above-mentioned mapping and the corresponding flows in an unbounded fluid for a number of choices of the activity function (i.e., the spatial distribution and the type of chemical reactions across the surface of the particle). We use the central collision of two active particles as a simple, paradigmatic case for demonstrating that in the presence of other particles or boundaries the behavior of chemically active colloids may be qualitatively different, even in the far field, from the one exhibited by the corresponding “effective squirmer”, obtained from the mapping in an unbounded fluid. This emphasizes that understanding the collective behavior and the dynamics under geometrical confinement of chemically active particles necessarily requires to explicitly account for the dependence of the hydrodynamic interactions on the distribution of chemical species resulting from the activity of the particles.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

Notes

Acknowledgments

Open Access funding provided by Max Planck Society.

References

  1. 1.
    R.F. Ismagilov, A. Schwartz, N. Bowden, G.M. Whitesides, Angew. Chem. Int. Ed. 41, 652 (2002)CrossRefGoogle Scholar
  2. 2.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y.Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  3. 3.
    G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 17, 3011 (2005)CrossRefGoogle Scholar
  4. 4.
    W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006)CrossRefGoogle Scholar
  5. 5.
    W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)CrossRefGoogle Scholar
  6. 6.
    A.A. Solovev, Y.F. Mei, E.B. Urena, G.S. Huang, O.G. Schmidt, Small 5, 1688 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Mirkovic, N.S. Zacharia, G.D. Scholes, G.A. Ozin, Small 6, 159 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Fournier-Bidoz, A.C. Arsenault, I. Manners, G.A. Ozin, Chem. Commun. 0, 441 (2005)CrossRefGoogle Scholar
  9. 9.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Ebbens, M.H. Tu, J.R. Howse, R. Golestanian, Phys. Rev. E 85, 020401(R) (2012)ADSCrossRefGoogle Scholar
  12. 12.
    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    T.C. Lee, M. Alarcón-Correa, C. Miksch, K. Hahn, J.G. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    X. Ma, S. Jang, M.N. Popescu, W.E. Uspal, A. Miguel-López, K. Hahn, D.P. Kim, S. Sánchez, ACS Nano 10, 8751 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Herminghaus, C.C. Maas, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Seemann, J.B. Fleury, C.C. Maas, Eur. Phys. J. ST 225, 2227 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Kroy, D. Chakraborty, F. Cichos, Eur. Phys. J. ST 225, 2207 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Lozano, B. ten Hagen, H. Löwen, C. Bechinger, Nat. Commun. 7, 12828 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    G.R. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)CrossRefADSGoogle Scholar
  25. 25.
    F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)CrossRefGoogle Scholar
  26. 26.
    M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    B. Sabass, U. Seifert, J. Chem. Phys. 136, 064508 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    B. Sabass, U. Seifert, J. Chem. Phys. 136, 214507 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    R. Kapral, J. Chem. Phys. 138, 202901 (2013)CrossRefGoogle Scholar
  30. 30.
    N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 25, 012001 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)ADSGoogle Scholar
  32. 32.
    S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Sci. Rep. 5, 9586 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    M.N. Popescu, W.E. Uspal, S. Dietrich, Eur. Phys. J. ST 225, 2189 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)ADSGoogle Scholar
  36. 36.
    J. de Graaf, G. Rempfer, C. Holm, IEEE Trans. NanoBiosci. 14, 272 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Oshanin, M.N. Popescu, S. Dietrich, J. Phys. A 50, 134001 (2017)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P.E. Lammert, V.H. Crespi, A. Nourhani, J. Fluid Mech. 802, 294 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    A.T. Brown, W.C.K. Poon, C. Holm, J. de Graaf, Soft Matter 13, 1200 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    B.V. Derjaguin, Y.I. Yalamov, A.I. Storozhilova, J. Colloid Interface Sci. 22, 117 (1966)ADSCrossRefGoogle Scholar
  47. 47.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  48. 48.
    C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)Google Scholar
  49. 49.
    J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Noordhoff Int. Pub., Leyden, The Netherlands, 1973)Google Scholar
  50. 50.
    M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)CrossRefGoogle Scholar
  51. 51.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)ADSCrossRefGoogle Scholar
  52. 52.
    O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)CrossRefGoogle Scholar
  53. 53.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    D. Lopez, E. Lauga, Phys. Fluids 26, 071902 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    A.J.T.M. Mathijssen, A. Doostmohammadi, J.M. Yeomans, T.N. Shendruk, J. Fluid Mech. 806, 35 (2016)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    R. Matas Navarro, I. Pagonabarraga, J. Non-Newton. Fluid Mech. 165, 946 (2010)CrossRefGoogle Scholar
  58. 58.
    K. Ishimoto, E.A. Gaffney, Phys. Rev. E 88, 062702 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    J. de Graaf, A.J.T.M. Mathijssen, M. Fabritius, H. Menke, C. Holm, T.N. Shendruk, Soft Matter 12, 4704 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    J.S. Lintuvuori, A.T. Brown, K. Stratford, D. Marenduzzo, Soft Matter 12, 7959 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    S.E. Spagnolie, G.R. Moreno-Flores, D. Bartolo, E. Lauga, Soft Matter 11, 3396 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    D. Papavassiliou, G.P. Alexander, J. Fluid Mech. 813, 618 (2017)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    R. Matas Navarro, I. Pagonabarraga, Eur. Phys. J. E 33, 27 (2010)CrossRefGoogle Scholar
  67. 67.
    F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)CrossRefGoogle Scholar
  68. 68.
    J.B. Delfau, J. Molina, M. Sano, EPL 114, 24001 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    D. Saintillan, M.J. Shelley, Phys. Fluids 20, 123304 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    E. Lauga, F. Nadal, EPL 116, 64004 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Y. Ibrahim, T.B. Liverpool, Eur. Phys. J. ST 225, 1843 (2016)CrossRefGoogle Scholar
  74. 74.
    L. Baraban, M. Tasinkevych, M.N. Popescu, S. Sánchez, S. Dietrich, O.G. Schmidt, Soft Matter 8, 48 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    J. Palacci, S. Sacanna, A.S. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert, C. Cottin-Bizonne, Nat. Commun. 9, 696 (2018)ADSCrossRefGoogle Scholar
  77. 77.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)ADSCrossRefGoogle Scholar
  79. 79.
    A.T. Brown, I.D. Vladescu, A. Dawson, T. Vissers, J. Schwarz-Linek, J.S. Lintuvuori, W.C.K. Poon, Soft Matter 12, 131 (2016)ADSCrossRefGoogle Scholar
  80. 80.
    A.M. Leshansky, A.A. Golovin, A. Nir, Phys. Fluids 9, 2818 (1997)ADSCrossRefGoogle Scholar
  81. 81.
    A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    S. Das, A. Garg, A.I. Campbell, J.R. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)ADSCrossRefGoogle Scholar
  84. 84.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016)ADSCrossRefGoogle Scholar
  85. 85.
    M.N. Popescu, W.E. Uspal, S. Dietrich, J. Phys.: Condens. Matter 29, 134001 (2017)ADSGoogle Scholar
  86. 86.
    W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Dietrich, New J. Phys. 20, 015013 (2018)ADSCrossRefGoogle Scholar
  87. 87.
    C. Liu, C. Zhou, W. Wang, H.P. Zhang, Phys. Rev. Lett. 117, 198001 (2016)ADSCrossRefGoogle Scholar
  88. 88.
    M.N. Popescu, S. Dietrich, G. Oshanin, J. Chem. Phys. 130, 194702 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    J. Palacci, S. Sacanna, A. Abramian, J. Barral, K. Hanson, A.Y. Grosberg, D.J. Pine, P.M. Chaikin, Sci. Adv. 1, e1400214 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 6613 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    J. Katuri, W.E. Uspal, J. Simmchen, A. Miguel López, S. Sánchez, Sci. Adv. 4, eaao1755 (2018)CrossRefGoogle Scholar
  92. 92.
    A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)CrossRefGoogle Scholar
  93. 93.
    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    Y. Ibrahim, T.B. Liverpool, EPL 111, 48008 (2015)ADSCrossRefGoogle Scholar
  95. 95.
    M.N. Popescu, W.E. Uspal, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 40, 42 (2017)CrossRefGoogle Scholar
  96. 96.
    N. Sharifi-Mood, A. Mozaffari, U.M. Córdova-Figueroa, J. Fluid Mech. 798, 910 (2016)ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    S.Y. Reigh, R. Kapral, Soft Matter 11, 3149 (2015)ADSCrossRefGoogle Scholar
  98. 98.
    M.N. Popescu, S. Dietrich, M. Tasinkevych, J. Ralston, Eur. Phys. J. E 31, 351 (2010)CrossRefGoogle Scholar
  99. 99.
    J.F. Brady, J. Fluid Mech. 667, 216 (2011)ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)Google Scholar
  101. 101.
    M. Abramowitz, I.R. Stegun (Editors), Handbook of Mathematical Functions (Dover, New York, 1972)Google Scholar
  102. 102.
    X. Ma, A. Jannasch, U.R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Nano Lett. 15, 7043 (2015)ADSCrossRefGoogle Scholar
  103. 103.
    G.F. Elfring, Phys. Fluids 27, 023101 (2015)ADSCrossRefGoogle Scholar
  104. 104.
    K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)ADSCrossRefGoogle Scholar
  105. 105.
    Z. Eskandari, unpublished (2016)Google Scholar
  106. 106.
    A. Brown, W.C.K. Poon, Soft Matter 10, 4016 (2014)ADSCrossRefGoogle Scholar
  107. 107.
    U.M. Córdova-Figueroa, J.F. Brady, Phys. Rev. Lett. 100, 158303 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    W.D. Collins, Math. Proc. Cambridge Philos. Soc. 57, 367 (1961)ADSCrossRefGoogle Scholar
  109. 109.
    I.N. Sneddon, Mixed boundary Value in Potential Theory (North-Holland, Amsterdam, The Netherlands, 1966)Google Scholar
  110. 110.
    R. Samson, J.M. Deutch, J. Chem. Phys. 68, 285 (1978)ADSCrossRefGoogle Scholar
  111. 111.
    D. Shoup, G. Lipari, A. Szabo, Biophys. J. 36, 697 (1981)CrossRefGoogle Scholar
  112. 112.
    D. Shoup, A. Szabo, Biophys. J. 40, 33 (1982)ADSCrossRefGoogle Scholar
  113. 113.
    S.D. Traytak, J. Phys. Chem. 98, 7419 (1994)CrossRefGoogle Scholar
  114. 114.
    S.D. Traytak, Chem. Phys. 192, 1 (1995)CrossRefGoogle Scholar
  115. 115.
    S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 9240 (1995)ADSCrossRefGoogle Scholar
  116. 116.
    S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 2760 (1995)ADSCrossRefGoogle Scholar
  117. 117.
    S.D. Traytak, W.S. Price, J. Chem. Phys. 127, 184508 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    P. Malgaretti, M.N. Popescu, S. Dietrich, Soft Matter 14, 1375 (2018)ADSCrossRefGoogle Scholar
  119. 119.
    S.Y. Reigh, P. Chuphal, S. Thakur, R. Kapral, Soft Matter 14, 6043 (2018)ADSCrossRefGoogle Scholar
  120. 120.
    A. Varma, T.D. Montenegro-Johnson, S. Michelin, Soft Matter 14, 7155 (2018)ADSCrossRefGoogle Scholar
  121. 121.
    M. Wagner, M. Ripoll, EPL 119, 66007 (2017)ADSCrossRefGoogle Scholar
  122. 122.
    A.M. Leshansky, O. Kenneth, O. Gat, J.E. Avron, New J. Phys. 9, 145 (2007)ADSCrossRefGoogle Scholar
  123. 123.
    M. Theers, E. Westphal, G. Gompper, R.G. Winkler, Soft Matter 12, 7372 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • M. N. Popescu
    • 1
    • 2
  • W. E. Uspal
    • 1
    • 2
  • Z. Eskandari
    • 1
    • 2
  • M. Tasinkevych
    • 3
  • S. Dietrich
    • 1
    • 2
  1. 1.Max-Planck-Institut für Intelligente SystemeStuttgartGermany
  2. 2.IV. Institut für Theoretische PhysikUniversität StuttgartStuttgartGermany
  3. 3.Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations