Advertisement

The Ising model in swollen vs. compact polymers: Mean-field approach and computer simulations

  • Andrea Papale
  • Angelo RosaEmail author
Regular Article
  • 37 Downloads

Abstract.

We study the properties of the classical Ising model with nearest-neighbor interaction for spins located at the monomers of long polymer chains in 2 and 3 dimensions. We compare results for two ensembles of polymers with very different single chain properties: 1) swollen, self-avoiding linear polymer chains in good solvent conditions and 2) compact, space-filling randomly branching polymers in melt. By employing a mean-field approach and Monte Carlo computer simulations, we show that swollen polymers cannot sustain an ordered phase. On the contrary, compact polymers may indeed produce an observable phase transition. Finally, we briefly consider the statistical properties of the ordered phase by comparing polymer chains within the same universality class but characterized by very different shapes.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    W. Lenz, Phys. Z. 21, 613 (1920)Google Scholar
  2. 2.
    E. Ising, Z. Phys. 31, 253 (1925)ADSCrossRefGoogle Scholar
  3. 3.
    S.G. Brush, Rev. Mod. Phys. 39, 883 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    K. Huang, Statistical Mechanics, 2nd edition (John Wiley & Sons, 1987)Google Scholar
  5. 5.
    J.J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Schinckus, Physica A 508, 95 (2018)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    B.K. Chakrabarti, S. Bhattacharya, J. Phys. C: Solid State Phys. 16, L1025 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    S. Bhattacharya, B.K. Chakrabarti, Z. Phys. B: Condens. Matter 57, 151 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    B.K. Chakrabarti, S. Bhattacharya, J. Phys. A: Math. Gen. 18, 1037 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    B.K. Chakrabarti, A.C. Maggs, R.B. Stinchcombe, J. Phys. A: Math. Gen. 18, L373 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    T. Garel, H. Orland, E. Orlandini, Eur. Phys. J. B 12, 261 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A. Rosa, R. Everaers, J. Chem. Phys. 145, 164906 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A.R. Khokhlov, S.K. Nechaev, Phys. Lett. A 112, 156 (1985)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Rubinstein, Phys. Rev. Lett. 57, 3023 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    S.P. Obukhov, M. Rubinstein, T. Duke, Phys. Rev. Lett. 73, 1263 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    A.Y. Grosberg, Soft Matter 10, 560 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    A. Rosa, R. Everaers, Phys. Rev. Lett. 112, 118302 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Rosa, R. Everaers, PLOS Comput. Biol. 4, e1000153 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.D. Halverson, J. Smrek, K. Kremer, A.Y. Grosberg, Rep. Prog. Phys. 77, 022601 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A. Colliva, R. Pellegrini, A. Testori, M. Caselle, Phys. Rev. E 91, 052703 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Jost, P. Carrivain, G. Cavalli, C. Vaillant, Nucl. Acids Res. 42, 9553 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Jost, Phys. Rev. E 89, 010701 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J.D. Olarte-Plata, N. Haddad, C. Vaillant, D. Jost, Phys. Biol. 13, 026001 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    D. Jost, C. Vaillant, Nucl. Acids Res. 46, 2252 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Aertsens, C. Vanderzande, J. Phys. A: Math. Gen. 25, 735 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    K.G. Wilson, Phys. Rev. B 4, 3174 (1971)ADSCrossRefGoogle Scholar
  27. 27.
    K.G. Wilson, Phys. Rev. B 4, 3184 (1971)ADSCrossRefGoogle Scholar
  28. 28.
    S. Ma, Modern Theory of Critical Phenomena (Benjamin London, 1976)Google Scholar
  29. 29.
    N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, 1992)Google Scholar
  30. 30.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003)Google Scholar
  31. 31.
    R. Everaers, A.Y. Grosberg, M. Rubinstein, A. Rosa, Soft Matter 13, 1223 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    A. Rosa, R. Everaers, Phys. Rev. E 95, 012117 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    A. Rosa, R. Everaers, https://doi.org/arxiv.org/abs/1808.06861 (2018)
  34. 34.
    N. Madras, A.D. Sokal, J. Stat. Phys. 50, 109 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    A. Rosa, R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016)CrossRefGoogle Scholar
  36. 36.
    W.A. Seitz, D.J. Klein, J. Chem. Phys. 75, 5190 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    U. Wolff, Phys. Rev. Lett. 62, 361 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    W. Krauth, Statistical Mechanics Algorithms and Computations (Oxford University Press, Oxford, 2006)Google Scholar
  39. 39.
    M. Bishop, J.P.J. Michels, J. Chem. Phys. 84, 444 (1986)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sissa (Scuola Internazionale Superiore di Studi Avanzati)TriesteItaly

Personalised recommendations