Advertisement

Nematic liquid crystals of bifunctional patchy spheres

  • Khanh Thuy Nguyen
  • Cristiano De MicheleEmail author
Regular Article
  • 57 Downloads

Abstract.

Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

Supplementary material

10189_2018_11750_MOESM1_ESM.pdf (233 kb)
Supplementary material

References

  1. 1.
    I. Hamley, Introduction to Soft Matter (Wiley & Sons, 2007)Google Scholar
  2. 2.
    S.C. Glotzer, Science 306, 419 (2004)CrossRefGoogle Scholar
  3. 3.
    G.M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. U.S.A. 99, 4769 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A. Khan, Curr. Opin. Colloid Interface Sci. 1, 614 (1996)CrossRefGoogle Scholar
  5. 5.
    P. van der Schoot, M. Cates, Langmuir 10, 670 (1994)CrossRefGoogle Scholar
  6. 6.
    D.M. Kuntz, L.M. Walker, Soft Matter 4, 286 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Mezzenga, J.M. Jung, J. Adamcik, Langmuir 26, 10401 (2010)CrossRefGoogle Scholar
  8. 8.
    C.F. Lee, Phys. Rev. E 80, 031902 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Ciferri, Liq. Cryst. 34, 693 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Aggeli, M. Bell, L.M. Carrick, C.W.G. Fishwick, R. Harding, P.J. Mawer, S.E. Radford, A.E. Strong, N. Boden, J. Am. Chem. Soc. 125, 9619 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    C. Maffeo, B. Luan, A. Aksimentiev, Nucl. Acids Res. 40, 3812 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Salamonczyk, J. Zhang, G. Portale, C. Zhu, E. Kentzinger, J.T. Gleeson, A. Jakli, C. De Michele, J.K.G. Dhont, S. Sprunt et al., Nat. Commun. 7, 13358 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C. Robinson, Tetrahedron 13, 219 (1961)CrossRefGoogle Scholar
  15. 15.
    F. Livolant, A.M. Levelut, J. Doucet, J.P. Benoit, Nature 339, 724 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    K. Merchant, R.L. Rill, Biophys. J. 73, 3154 (1997)CrossRefGoogle Scholar
  17. 17.
    F. Tombolato, A. Ferrarini, J. Chem. Phys. 122, 054908 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    P. Mariani, F. Spinozzi, F. Federiconi, H. Amenitsch, L. Spindler, I. Drevensek-Olenik, J. Phys. Chem. B 113, 7934 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Chami, M.R. Wilson, J. Am. Chem. Soc. 132, 7794 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Lydon, Liq. Cryst. 38, 1663 (2011)CrossRefGoogle Scholar
  21. 21.
    P.K. Maiti, Y. Lansac, M.A. Glaser, N.A. Clark, Liq. Cryst. 29, 619 (2002)CrossRefGoogle Scholar
  22. 22.
    R.G. Edwards, J. Henderson, R.L. Pinning, Mol. Phys. 86, 567 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    J.R. Henderson, J. Chem. Phys. 113, 5965 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, E. Kumacheva, Science 329, 197 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    H.S. Park, S.W. Kang, L. Tortora, Y. Nastishin, D. Finotello, S. Kumar, O.D. Lavrentovich, J. Phys. Chem. B 112, 16307 (2008)CrossRefGoogle Scholar
  26. 26.
    N.B. Wilding, J. Phys.: Condens. Matter 9, 585 (1996)ADSGoogle Scholar
  27. 27.
    J. Herzfeld, Acc. Chem. Res. 29, 31 (1996)CrossRefGoogle Scholar
  28. 28.
    X. Lü, J.T. Kindt, J. Chem. Phys. 120, 10328 (2004)CrossRefGoogle Scholar
  29. 29.
    X. Lü, J. Kindt, J. Chem. Phys. 125, 054909 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    T. Kuriabova, M. Betterton, M. Glaser, J. Mater. Chem. 20, 10366 (2010)CrossRefGoogle Scholar
  31. 31.
    C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M.M.C. Tortora, J.P.K. Doye, Mol. Phys. 116, 2773 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)CrossRefGoogle Scholar
  34. 34.
    K.T. Nguyen, A. Battisti, D. Ancora, F. Sciortino, C. De Michele, Soft Matter 11, 2934 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Wertheim, J. Stat. Phys. 35, 19 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    M.S. Wertheim, J. Stat. Phys. 35, 35 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    M.S. Wertheim, J. Stat. Phys. 42, 459 (1986)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M.S. Wertheim, J. Chem. Phys. 87, 7323 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    F. Sciortino, E. Bianchi, J.F. Douglas, P. Tartaglia, J. Chem. Phys. 126, 194903 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    F. Sciortino, J. Douglas, C. De Michele, J. Phys.: Condens. Matter 20, 155101 (2008)ADSGoogle Scholar
  43. 43.
    C. De Michele, G. Zanchetta, T. Bellini, E. Frezza, A. Ferrarini, ACS Macro Lett. 5, 208 (2016)CrossRefGoogle Scholar
  44. 44.
    E. Romani, A. Ferrarini, C. De Michele, Macromolecules 51, 5409 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    D.C. Williamson, G. Jackson, J. Chem. Phys. 108, 10294 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    R.M. Choueiri, E. Galati, H. Thérien-Aubin, A. Klinkova, E.M. Larin, A. Querejeta-Fernández, L. Han, H.L. Xin, O. Gang, E.B. Zhulina et al., Nature 538, 79 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    S. Ravaine, E. Duguet, Curr. Opin. Colloid Interface Sci. 30, 45 (2017)CrossRefGoogle Scholar
  48. 48.
    G.R. Yi, D.J. Pine, S. Sacanna, J. Phys.: Condens. Matter 25, 193101 (2013)ADSGoogle Scholar
  49. 49.
    É. Duguet, C. Hubert, C. Chomette, A. Perro, S. Ravaine, C. R. Chim. 19, 173 (2016)CrossRefGoogle Scholar
  50. 50.
    H. Bao, T. Bihr, A.S. Smith, R.N. Klupp Taylor, Nanoscale 6, 3954 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    A.A. Shah, B. Schultz, K.L. Kohlstedt, S.C. Glotzer, M.J. Solomon, Langmuir 29, 4688 (2013)CrossRefGoogle Scholar
  52. 52.
    C.M. Rachelle, E. Galati, A. Klinkova, H. Therien-Aubin, E. Kumacheva, Faraday Discuss. 191, 189 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Zhao, R. Berger, K. Landfester, D. Crespy, Polym. Chem. 5, 365 (2014)CrossRefGoogle Scholar
  54. 54.
    C. Bae, H. Kim, J.M. Montero Moreno, G.R. Yi, H. Shin, Sci. Rep. 5, 9339 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  57. 57.
    T. Odijk, Macromolecules 19, 2313 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992)ADSCrossRefGoogle Scholar
  59. 59.
    J.R. Henderson, Phys. Rev. Lett. 77, 2316 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    J.R. Henderson, Phys. Rev. E 55, 5731 (1997)ADSCrossRefGoogle Scholar
  61. 61.
    C. Vega, E. Sanz, J.L.F. Abascal, E.G. Noya, J. Phys.: Condens. Matter 20, 153101 (2008)ADSGoogle Scholar
  62. 62.
    D.A. Kofke, J. Chem. Phys. 98, 4149 (1993)ADSCrossRefGoogle Scholar
  63. 63.
    P. Tian, D. Bedrov, G.D. Smith, M. Glaser, J. Chem. Phys. 115, 9055 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    P. Virnau, M. Muller, J. Chem. Phys. 120, 10925 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    R.L.C. Vink, T. Schilling, Phys. Rev. E 71, 051716 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    J.D. Parsons, Phys. Rev. A 19, 1225 (1979)ADSCrossRefGoogle Scholar
  67. 67.
    S. Lee, J. Chem. Phys. 87, 4972 (1987)ADSCrossRefGoogle Scholar
  68. 68.
    S. Varga, I. Szalai, Mol. Phys. 98, 693 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, CA, 2000)Google Scholar
  70. 70.
    D.C. Williamson, G. Jackson, Mol. Phys. 86, 819 (1995)ADSCrossRefGoogle Scholar
  71. 71.
    S.C. McGrother, D.C. Williamson, G. Jackson, J. Chem. Phys. 104, 6755 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    D. Frenkel, B.M. Mulder, J.P. McTague, Phys. Rev. Lett. 52, 287 (1984)ADSCrossRefGoogle Scholar
  73. 73.
    M. Allen, D. Frenkel, J. Talbot, Comput. Phys. Rep. 9, 301 (1989)ADSCrossRefGoogle Scholar
  74. 74.
    M.P. Allen, G. Evans, D. Frenkel, B.M. Mulder, Adv. Chem. Phys. 86, 1 (1993)Google Scholar
  75. 75.
    S. Whitelam, Phys. Rev. Lett. 117, 228003 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    F. Smallenburg, F. Sciortino, Nat. Phys. 9, 554 (2013)CrossRefGoogle Scholar
  77. 77.
    F. Romano, F. Sciortino, Nat. Commun. 3, 975 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    C.L. Phillips, E. Jankowski, B.J. Krishnatreya, K.V. Edmond, S. Sacanna, D.G. Grier, D.J. Pine, S.C. Glotzer, Soft Matter 10, 7468 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica“Sapienza” Università di RomaRomaItaly

Personalised recommendations