Advertisement

Gravity effects on mixing with magnetic micro-convection in microfluidics

  • G. Kitenbergs
  • A. Tatuļčenkovs
  • L. Puķina
  • A. Cēbers
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Mixing remains an important problem for the development of successful microfluidic and lab-on-a-chip devices, where simple and predictable systems are particularly interesting. One is magnetic micro-convection, an instability happening on the interface of miscible magnetic and non-magnetic fluids in a Hele-Shaw cell under applied field. Previous work proved that the Brinkman model quantitatively explains the experiments. However, a gravity-caused convective motion complicated the tests. Here we first improve the experimental system to exclude the parasitic convection. Afterwards, we experimentally observe the magnetic micro-convection, by finding and quantifying how gravity and laminar flow stabilizes the perturbations that create it. Accordingly, we improve our theoretical model for a zero-flow condition and perform a linear analysis. Two dimensionless quantities --magnetic and gravitational Rayleigh numbers-- are used to compare the experimental observations and theoretical predictions for the critical field of instability and the characteristic size of the emerging pattern. Finally, we discuss the conditions at which gravity plays an important role in microfluidic systems.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    G. Cai, L. Xue, H. Zhang, J. Lin, Micromachines 8, 274 (2017)CrossRefGoogle Scholar
  3. 3.
    R.-J. Yang, H.-H. Hou, Y.-N. Wang, L.-M. Fu, Sens. Actuators, B 224, 1 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Chen, L. Zhang, Microchim. Acta 184, 3639 (2017)CrossRefGoogle Scholar
  5. 5.
    G. Kitenbergs, K. Erglis, R. Perzynski, A. Cebers, J. Magn. & Magn. Mater. 380, 227 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Maiorov, A. Cebers, Magnetohydrodynamics 19, 376 (1983)Google Scholar
  7. 7.
    K. Erglis, A. Tatulcenkov, G. Kitenbergs, O. Petrichenko, F.G. Ergin, B.B. Watz, A. Cebers, J. Fluid Mech. 714, 612 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Kitenbergs, A. Tatulcenkovs, K. Erglis, O. Petrichenko, R. Perzynski, A. Cebers, J. Fluid Mech. 774, 170 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Igonin, A. Cebers, Phys. Fluids 15, 1734 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    C. Derec, P. Boltenhagen, S. Neveu, J.-C. Bacri, Magnetohydrodynamics 44, 135 (2008)ADSGoogle Scholar
  11. 11.
    C.-Y. Wen, C.-Y. Chen, D. Kuan, Phys. Fluids 19, 084101 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    H. Li, C.-Y. Kao, C.-Y. Wen, J. Fluid Mech. 836, 375 (2018)ADSGoogle Scholar
  13. 13.
    M.-Y. Chen, L.-Q. Chen, H. Li, C.-Y. Wen, Phys. Fluids 29, 024109 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    G. Kitenbergs, Hydrodynamic instabilities in microfluidic magnetic fluid flows, PhD Thesis, UPMC & Univ. Latvia (2015)Google Scholar
  15. 15.
    R. Massart, IEEE Trans. Magn. 17, 1247 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    A. Cebers, Magnetohydrodynamics 33, 48 (1997)MathSciNetGoogle Scholar
  17. 17.
    A. Cebers, Magnetohydrodynamics 17, 113 (1981)Google Scholar
  18. 18.
    D.P. Jackson, R.E. Goldstein, A. Cebers, Phys. Rev. E 50, 298 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    B.T. Huang, M. Roger, M. Bonetti, T.J. Salez, C. Wiertel-Gasquet, E. Dubois, R. Cabreira Gomes, G. Demouchy, G. Mriguet, V. Peyre, M. Kouyat, C.L. Filomeno, J. Depeyrot, F.A. Tourinho, R. Perzynski, S. Nakamae, J. Chem. Phys. 143, 7 (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Kitenbergs
    • 1
  • A. Tatuļčenkovs
    • 1
  • L. Puķina
    • 1
  • A. Cēbers
    • 1
    • 2
  1. 1.MMML lab, Department of PhyscisUniversity of LatviaRigaLatvia
  2. 2.Chair of Theoretical Physics, Department of PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations