Advertisement

Surface swimmers, harnessing the interface to self-propel

  • G. Grosjean
  • M. Hubert
  • Y. Collard
  • S. Pillitteri
  • N. Vandewalle
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

In the study of microscopic flows, self-propulsion has been particularly topical in recent years, with the rise of miniature artificial swimmers as a new tool for flow control, low Reynolds number mixing, micromanipulation or even drug delivery. It is possible to take advantage of interfacial physics to propel these microrobots, as demonstrated by recent experiments using the proximity of an interface, or the interface itself, to generate propulsion at low Reynolds number. This paper discusses how a nearby interface can provide the symmetry breaking necessary for propulsion. An overview of recent experiments illustrates how forces at the interface can be used to generate locomotion. Surface swimmers ranging from the microscopic scale to typically the capillary length are covered. Two systems are then discussed in greater detail. The first is composed of floating ferromagnetic spheres that assemble through capillarity into swimming structures. Two previously studied configurations, triangular and collinear, are discussed and contrasted. A new interpretation for the triangular swimmer is presented. Then, the non-monotonic influence of surface tension and viscosity is evidenced in the collinear case. Finally, a new system is introduced. It is a magnetically powered, centimeter-sized piece that swims similarly to water striders.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000)Google Scholar
  2. 2.
    G.I. Taylor, Proc. R. Soc. Lond. A 209, 447 (1951)ADSCrossRefGoogle Scholar
  3. 3.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C. Navier, Mem. Acad. R. Sci. (Paris) 6, 389 (1823)Google Scholar
  6. 6.
    G.G. Stokes, Trans. Cambridge Philos. Soc. 8, 287 (1845)Google Scholar
  7. 7.
    G.G. Stokes, Trans. Cambridge Philos. Soc. 9, 8 (1851)ADSGoogle Scholar
  8. 8.
    O. Reynolds, Philos. Trans. R. Soc. 174, 935 (1884)ADSCrossRefGoogle Scholar
  9. 9.
    D. Klotsa, K.A. Baldwin, R.J.A. Hill, R.M. Bowley, M.R. Swift, Phys. Rev. Lett. 115, 248102 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S. Alben, M. Shelley, Proc. Natl. Acad. Sci. U.S.A. 102, 11163 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    G. Grosjean, G. Lagubeau, A. Darras, M. Hubert, G. Lumay, N. Vandewalle, Sci. Rep. 5, 16035 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    R. Trouilloud, S.Y. Tony, A. Hosoi, E. Lauga, Phys. Rev. Lett. 101, 048102 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, J. Phys. Chem. B 112, 16525 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Martinez-Pedrero, P. Tierno, Phys. Rev. Appl. 3, 051003 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    E. Lauga, Phys. Fluids 19, 061703 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D.O. Pushkin, J.M. Yeomans, Phys. Rev. Lett. 111, 188101 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, Phys. Rev. Lett. 101, 218304 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A. Farutin, S. Rafaï, D.K. Dysthe, A. Duperray, P. Peyla, C. Misbah, Phys. Rev. Lett. 111, 228102 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Golestanian, A. Ajdari, Phys. Rev. E 77, 036308 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    R. Zargar, A. Najafi, M. Miri, Phys. Rev. E 80, 026308 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    K. Pickl, J. Götz, K. Iglberger, J. Pande, K. Mecke, A.S. Smith, U. Rüde, J. Comput. Sci. 3, 374 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Pande, A.S. Smith, Soft Matter 11, 2364 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Pande, L. Merchant, T. Krger, J. Harting, A.S. Smith, New J. Phys. 19, 053024 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    G. Lumay, N. Obara, F. Weyer, N. Vandewalle, Soft Matter 9, 2420 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    E. Lauga, EPL 86, 64001 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    T. Qiu, T.C. Lee, A.G. Mark, K.I. Morozov, R. Münster, O. Mierka, S. Turek, A.M. Leshansky, P. Fischer, Nat. Commun. 5, 5119 (2014)CrossRefGoogle Scholar
  29. 29.
    E. Lauga, D. Bartolo, Phys. Rev. E 78, 030901 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    P. Tierno, O. Güell, F. Sagués, R. Golestanian, I. Pagonabarraga, Phys. Rev. E 81, 011402 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    M.N. Popescu, W.E. Uspal, S. Dietrich, Eur. Phys. J. ST 225, 2189 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    M. Pumera, Nanoscale 2, 1643 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    X. Wang, M. In, C. Blanc, M. Nobili, A. Stocco, Soft Matter 11, 7376 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    X. Wang, M. In, C. Blanc, A. Wurger, M. Nobili, A. Stocco, Langmuir 33, 13766 (2017)CrossRefGoogle Scholar
  39. 39.
    K. Dietrich, D. Renggli, M. Zanini, G. Volpe, I. Buttinoni, L. Isa, New J. Phys. 19, 065008 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    K. Dietrich, G. Volpe, M.N. Sulaiman, D. Renggli, I. Buttinoni, L. Isa, Phys. Rev. Lett. 120, 268004 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    P. Malgaretti, M. Popescu, S. Dietrich, Soft Matter 14, 1375 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    A. Domínguez, P. Malgaretti, M. Popescu, S. Dietrich, Soft Matter 12, 8398 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    S. Nakata, M. Hata, Y.S. Ikura, E. Heisler, A. Awazu, H. Kitahata, H. Nishimori, J. Phys. Chem. C 117, 24490 (2013)CrossRefGoogle Scholar
  45. 45.
    Y. Karasawa, S. Oshima, T. Nomoto, T. Toyota, M. Fujinami, Chem. Lett. 43, 1002 (2014)CrossRefGoogle Scholar
  46. 46.
    T. Mitsumata, J.P. Gong, Y. Osada, Polym. Adv. Technol. 12, 136 (2001)CrossRefGoogle Scholar
  47. 47.
    N. Bassik, B.T. Abebe, D.H. Gracias, Langmuir 24, 12158 (2008)CrossRefGoogle Scholar
  48. 48.
    E. Bormashenko, Y. Bormashenko, R. Grynyov, H. Aharoni, G. Whyman, B.P. Binks, J. Phys. Chem. C 119, 9910 (2015)CrossRefGoogle Scholar
  49. 49.
    S. Nakata, S. Ichi Hiromatsu, Chem. Phys. Lett. 405, 39 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Izri, M.N. Van Der Linden, S. Michelin, O. Dauchot, Phys. Rev. Lett. 113, 248302 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    D. Okawa, S.J. Pastine, A. Zettl, J.M. Fréchet, J. Am. Chem. Soc. 131, 5396 (2009)CrossRefGoogle Scholar
  52. 52.
    R.T. Mallea, A. Bolopion, J.C. Beugnot, P. Lambert, M. Gauthier, IEEE/ASME Trans. Mechatron. 22, 693 (2017)CrossRefGoogle Scholar
  53. 53.
    H. Ebata, M. Sano, Sci. Rep. 5, 8546 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    A. Snezhko, I.S. Aranson, W.K. Kwok, Phys. Rev. E 73, 041306 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    A. Snezhko, I.S. Aranson, Nat. Mater. 10, 698 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    G. Grosjean, M. Hubert, G. Lagubeau, N. Vandewalle, Phys. Rev. E 94, 021101 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    A.S. Basu, S.Y. Yee, Y.B. Gianchandani, Virtual components for droplet control using marangoni flows: size-selective filters, traps, channels, and pumps, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007) pp. 401--404Google Scholar
  58. 58.
    Y. Couder, S. Protière, E. Fort, A. Boudaoud, Nature 437, 208 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)CrossRefGoogle Scholar
  60. 60.
    M. Hubert, G. Grosjean, Y.E. Corbisier, G. Lumay, F. Weyer, N. Obara, N. Vandewalle, arXiv preprint arXiv:1310.3094 (2013)Google Scholar
  61. 61.
    R. Chinomona, J. Lajeunesse, W.H. Mitchell, Y. Yao, S.E. Spagnolie, Soft Matter 11, 1828 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    G. Lagubeau, G. Grosjean, A. Darras, G. Lumay, M. Hubert, N. Vandewalle, Phys. Rev. E 93, 053117 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    G. Grosjean, M. Hubert, N. Vandewalle, Adv. Colloid Interface Sci. 255, 84 (2018)CrossRefGoogle Scholar
  64. 64.
    P.A. Kralchevsky, K. Nagayama, Langmuir 10, 23 (1994)CrossRefGoogle Scholar
  65. 65.
    D. Vella, L. Mahadevan, Am. J. Phys. 73, 817 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    D.L. Hu, B. Chan, J.W. Bush, Nature 424, 663 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    D.L. Hu, J.W. Bush, Nature 437, 733 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    S. Gart, D. Vella, S. Jung, Soft Matter 7, 2444 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    R. Suter, O. Rosenberg, S. Loeb, H. Wildman, J. Long, J. Exp. Biol. 200, 2523 (1997)Google Scholar
  70. 70.
    X.Q. Feng, X. Gao, Z. Wu, L. Jiang, Q.S. Zheng, Langmuir 23, 4892 (2007)CrossRefGoogle Scholar
  71. 71.
    J.W. Bush, D.L. Hu, M. Prakash, Adv. Insect Physiol. 34, 117 (2007)CrossRefGoogle Scholar
  72. 72.
    Y.S. Song, M. Sitti, IEEE Trans. Robot 23, 578 (2007)CrossRefGoogle Scholar
  73. 73.
    X. Zhang, J. Zhao, Q. Zhu, N. Chen, M. Zhang, Q. Pan, ACS Appl. Mater. Interfaces 3, 2630 (2011)CrossRefGoogle Scholar
  74. 74.
    G.K. Taylor, R.L. Nudds, A.L. Thomas, Nature 425, 707 (2003)ADSCrossRefGoogle Scholar
  75. 75.
    C. Eloy, J. Fluids Struct. 30, 205 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Grosjean
    • 1
  • M. Hubert
    • 1
  • Y. Collard
    • 1
  • S. Pillitteri
    • 1
  • N. Vandewalle
    • 1
  1. 1.GRASPUniversité de LiègeLiègeBelgium

Personalised recommendations