Advertisement

Nematic-isotropic transition in a density-functional theory for hard spheroidal colloids

  • E. S. Nascimento
Regular Article

Abstract.

We introduce a density-functional formalism based on the Parsons-Lee and the generalized van der Waals theories in order to describe the thermodynamics of anisotropic particle systems with steric interactions. For ellipsoids of revolution, the orientational distribution function is obtained by minimizing the free energy functional and the equations of state are determined. The system exhibits a nematic-isotropic discontinuous transition, characterized by a phase separation between nematic and isotropic phases at finite as well low packing fractions. The model presents a phase behavior which is in good agreement with Monte Carlo simulations for finite aspect ratios.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    L. Mederos, E. Velasco, Y. Martines-Raton, J. Phys.: Condens. Matter 26, 463101 (2014)ADSGoogle Scholar
  2. 2.
    M. Dijkstra, Adv. Chem. Phys. 156, 35 (2014)Google Scholar
  3. 3.
    D. Frenkel, Nat. Mater. 14, 9 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    P. Tarazona, Mol. Phys. 52, 81 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    P. Bolhuis, D. Frenkel, J. Chem. Phys. 106, 666 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    D. Frenkel, B.M. Mulder, J.P. McTague, Phys. Rev. Lett. 52, 287 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    D. Frenkel, B.M. Munder, Mol. Phys. 55, 1171 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    G. Odriozola, J. Chem. Phys. 136, 134505 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    G. Evans, Mol. Phys. 76, 1359 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Martínez-Ratón, E. Velasco, J. Chem. Phys. 129, 054907 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A. Kuijk, D.V. Byelov, A.V. Petukhov, A. van Blaaderen, A. Imhof, Faraday Discuss. 159, 181 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    F.M. van der Kooij, H.N. Lekkerkerker, J. Phys. Chem. B 102, 7829 (1998)CrossRefGoogle Scholar
  14. 14.
    B.J. Lemaire, P. Davidson, J. Ferré, J.P. Jamet, P. Panine, I. Dozov, J.P. Jolivet, Phys. Rev. Lett. 88, 125507 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    H.N.W. Lekkerkerker, G.J. Vroege, Philos. Trans. R. Soc. A 371, 20120263 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Straley, Mol. Cryst. Liq. Cryst. 24, 7 (1973)CrossRefGoogle Scholar
  18. 18.
    G. Cinacchi, F. Schmid, J. Phys.: Condens. Matter 14, 12223 (2002)ADSGoogle Scholar
  19. 19.
    E.S. Nascimento, P. Palffy-Muhoray, J.M. Taylor, E.G. Virga, X. Zheng, Phys. Rev. E 96, 022704 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Parsons, Phys. Rev. A 19, 1225 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    Sin-Doo Lee, J. Chem. Phys. 87, 4972 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    Sin-Doo Lee, J. Chem. Phys. 89, 7036 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Vera, J.M. Prausnitz, Chem. Eng. J. 3, 1 (1972)CrossRefGoogle Scholar
  25. 25.
    S.I. Sandler, Fluid Phase Equilib. 19, 223 (1985)CrossRefGoogle Scholar
  26. 26.
    Y.S. Wei, R.J. Sadus, AIChE J. 46, 169 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Nordholm, M. Johnson, B.C. Freasier, Aus. J. Chem. 33, 2139 (1980)CrossRefGoogle Scholar
  28. 28.
    B.C. Freasier, C.E. Woodward, S. Nordholm, J. Chem. Phys. 90, 5657 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    A. Samborski, G.T. Evans, C.P. Mason, M.P. Allen, Mol. Phys. 81, 263 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    P.J. Camp, C.P. Marson, M.P. Allen, A.A. Khae, D.A. Kofke, J. Chem Phys. 105, 2837 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    A. Isihara, J. Chem. Phys. 19, 1142 (1951)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Piastra, E.G. Virga, Phys. Rev. E. 91, 062503 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    T. Kihara, Rev. Mod. Phys. 25, 831 (1953)ADSCrossRefGoogle Scholar
  34. 34.
    B. Mulder, Mol. Phys. 103, 1411 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    G. Singh, B. Kumar, Ann. Phys. 294, 24 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  37. 37.
    G. Vertogen, W.H. de Jeu, Thermotropic Liquid Crystals, Fundamentals (Springer-Verlag, Berlin Heidelberg, 1988)Google Scholar
  38. 38.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Prees, Oxford, 1995)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations