Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transient electrohydrodynamics of a liquid drop in AC electric fields

  • 96 Accesses

Abstract.

The transient behavior of a leaky dielectric liquid drop under a uniform AC electric field of small strength is investigated, using a closed form analytical solution. The drop settles to a quasi-steady state in a relaxation time that is set by the viscosities of the drop and the ambient fluid and the surface tension, and oscillates around a mean deformation with a frequency that is twice the electric field frequency. The mode of instantaneous deformation remains the same (oblate or prolate) or switches between oblate and prolate, depending on the relative importance of the time-periodic component of the deformation compared to that of the time-exponential. The structure of the flow field and its evolution is studied for representative fluid systems at a high and a low electric field frequency. The individual contribution of the net tangential and normal electric stresses, which are the driving forces of the problem, on the flow structure and drop deformation is characterized. On the basis of the mean (time-independent) and time-periodic components of the driving forces, the flow field is represented as the superposition of three different flow patterns. It is shown that the interplay of these flow patterns leads to formation and destruction of toroidal vortices, and that the residence time of these vortices correlates inversely with the field frequency.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    Q. Wang, Z. Suo, X. Zhao, Nat. Commun. 3, 1157 (2012)

  2. 2

    J.S. Eow, M. Ghadiri, Chem. Eng. J. 85, 357 (2002)

  3. 3

    H. Kim, D. Luo, D. Link, D.A. Weitz, M. Marquez, Z. Cheng, Appl. Phys. Lett. 91, 133106 (2007)

  4. 4

    G. Taylor, Proc. R. Soc. A 291, 159 (1966)

  5. 5

    C. Smith, J. Melcher, Phys. Fluids 10, 2315 (1967)

  6. 6

    J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)

  7. 7

    D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)

  8. 8

    S. Torza, R.G. Cox, S.G. Mason, Philos. Trans. R. Soc. A 269, 295 (1971)

  9. 9

    O. Vizika, D. Saville, J. Fluid Mech. 239, 1 (1992)

  10. 10

    J. Baygents, N. Rivette, H. Stone, J. Fluid Mech. 368, 359 (1998)

  11. 11

    R. Allan, S. Mason, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 267, 45 (1962)

  12. 12

    C. Sozou, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 331, 263 (1972)

  13. 13

    R. Thaokar, Eur. Phys. J. E 35, 76 (2012)

  14. 14

    T. Ward, G. Homsy, Phys. Fluids 13, 3521 (2001)

  15. 15

    S. Lee, D. Im, I. Kang, Phys. Fluids 12, 1899 (2000)

  16. 16

    T. Ward, G. Homsy, J. Fluid Mech. 547, 215 (2006)

  17. 17

    C. Christov, G. Homsy, Phys. Fluids 21, 083102 (2009)

  18. 18

    N. Kaji, Y. Mori, Y. Tochitani, J. Heat Transfer 107, 788 (1985)

  19. 19

    A. Esmaeeli, M.A. Halim, Acta Mech. 229, 3943 (2018)

  20. 20

    G. Taylor, Proc. R. Soc. Lond. A 313, 453 (1969)

  21. 21

    A. Castellanos, A. Gonzalez, IEEE Trans. Dielectr. Electr. Insul. 5, 334 (1998)

  22. 22

    J.Q. Feng, Proc. R. Soc. Lond. A 455, 2245 (1999)

  23. 23

    M.N. Reddy, A. Esmaeeli, Int. J. Multiphase Flow 35, 1051 (2009)

  24. 24

    A. Esmaeeli, P. Sharifi, J. Electrost. 69, 504 (2011)

  25. 25

    T.B. Jones, Electromechanics of Particles (Cambridge University Press, New York, USA, 1995)

  26. 26

    J. Sherwood, J. Fluid Mech. 188, 133 (1988)

  27. 27

    T. Tsukada, T. Katayama, Y. Ito, M. Hozawa, J. Chem. Eng. Jpn. 26, 698 (1993)

  28. 28

    J.Q. Feng, T.C. Scott, J. Fluid Mech. 311, 289 (1996)

  29. 29

    E. Lac, G.M. Homsy, J. Fluid Mech. 590, 239 (2007)

  30. 30

    O. Ajayi, Proc. R. Soc. Lond. A 364, 499 (1978)

  31. 31

    J.W. Ha, S.M. Yang, J. Fluid Mech. 405, 131 (2000)

  32. 32

    A. Esmaeeli, A. Behjatian, Phys. Rev. E 86, 036310 (2012)

Download references

Author information

Correspondence to A. Esmaeeli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmaeeli, A. Transient electrohydrodynamics of a liquid drop in AC electric fields. Eur. Phys. J. E 41, 135 (2018). https://doi.org/10.1140/epje/i2018-11745-1

Download citation

Keywords

  • Flowing Matter: Liquids and Complex Fluids