Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamic modelling on the confined crystallization of mono-sized cubic particles under mechanical vibration

Abstract.

The dynamic crystallization of cubic granular particles under three-dimensional mechanical vibration is numerically investigated by the discrete element method. The effects of operational conditions (vibration, container shape and system size) and particle properties (gravity and friction) on the formation of crystals and defects are discussed. The results show that the formation and growth of clusters with face-to-face aligned cubic particles can be easily realized under vibrations. Especially, a single crystal with both translational and orientational ordering can be reproduced in a rectangular container under appropriate vibrations. It is also found that the gravitational effect is beneficial for the ordering of a packing; the ordering of frictional particles can be improved significantly with an enlarged gravitational acceleration. The flat walls of a rectangular container facilitate the formation of orderly layered structures. The curved walls of a cylindrical container contribute to the formation of ring-like structures, whereas they also cause distortions and defects in the packing centers. Finally, it is shown that the crystallization of inelastic particles is basically accomplished by the pursuit of a better mechanical stability of the system, with decreasing kinetic and potential energies.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T. Lippmann, G. Reiter, Nature 408, 839 (2000)

  2. 2

    V.N. Manoharan, Science 349, 1253751 (2015)

  3. 3

    J. Zhang, A. Kumbhar, J. He, N.C. Das, K. Yang, J.Q. Wang, H. Wang, K.L. Stokes, J. Fang, J. Am. Chem. Soc. 130, 15203 (2008)

  4. 4

    L. Rossi, S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7, 4139 (2011)

  5. 5

    Y. Sun, Y. Xia, Science 298, 2176 (2002)

  6. 6

    J. Henzie, M. Grunwald, A. Widmer-Cooper, P.L. Geissler, P. Yang, Nat. Mater. 11, 131 (2011)

  7. 7

    J.M. Meijer, F. Hagemans, L. Rossi, D.V. Byelov, S.I. Castillo, A. Snigirev, I. Snigireva, A.P. Philipse, A.V. Petukhov, Langmuir 28, 7631 (2012)

  8. 8

    J.M. Meijer, A. Pal, S. Ouhajji, H.N. Lekkerkerker, A.P. Philipse, A.V. Petukhov, Nat. Commun. 8, 14352 (2017)

  9. 9

    L. Rossi, V. Soni, D.J. Ashton, D.J. Pine, A.P. Philipse, P.M. Chaikin, M. Dijkstra, S. Sacanna, W.T.M. Irvine, Proc. Natl. Acad. Sci. U.S.A. 112, 5286 (2015)

  10. 10

    C. Avci, I. Imaz, A. Carne-Sanchez, J.A. Pariente, N. Tasios, J. Perez-Carvajal, M.I. Alonso, A. Blanco, M. Dijkstra, C. Lopez, D. Maspoch, Nat. Chem. 10, 78 (2018)

  11. 11

    J.D. Bernal, Nature 183, 141 (1959)

  12. 12

    J.L. Finney, Nature 266, 309 (1977)

  13. 13

    S. Torquato, F.H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010)

  14. 14

    S. Torquato, Y. Jiao, Nature 460, 876 (2009)

  15. 15

    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)

  16. 16

    J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011)

  17. 17

    U. Agarwal, F.A. Escobedo, Nat. Mater. 10, 230 (2011)

  18. 18

    P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012)

  19. 19

    R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Soft Matter 8, 8826 (2012)

  20. 20

    T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, F. Sciortino, J. Chem. Phys. 138, 164505 (2013)

  21. 21

    A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 111, 015501 (2013)

  22. 22

    A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, J. Chem. Phys. 142, 054904 (2015)

  23. 23

    B.S. John, A. Stroock, F.A. Escobedo, J. Chem. Phys. 120, 9383 (2004)

  24. 24

    G. van Anders, D. Klotsa, N.K. Ahmed, M. Engel, S.C. Glotzer, Proc. Natl. Acad. Sci. U.S.A. 111, E4812 (2014)

  25. 25

    F. Smallenburg, L. Filion, M. Marechal, M. Dijkstra, Proc. Natl. Acad. Sci. U.S.A. 109, 17886 (2012)

  26. 26

    K. Sandomirski, S. Walta, J. Dubbert, E. Allahyarov, A.B. Schofield, H. Löwen, W. Richtering, S.U. Egelhaaf, Eur. Phys. J. ST 223, 439 (2014)

  27. 27

    E. Allahyarov, K. Sandomirski, S.U. Egelhaaf, H. Lowen, Nat. Commun. 6, 7110 (2015)

  28. 28

    B. Liu, T.H. Besseling, A. van Blaaderen, A. Imhof, Phys. Rev. Lett. 115, 078301 (2015)

  29. 29

    J. Russo, A.C. Maggs, D. Bonn, H. Tanaka, Soft Matter 9, 7369 (2013)

  30. 30

    H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Chem. Eng. Sci. 62, 3378 (2007)

  31. 31

    P.A. Cundall, O.D.L. Strack, Geotechnique 29, 47 (1979)

  32. 32

    M. Spellings, R.L. Marson, J.A. Anderson, S.C. Glotzer, J. Chem. Phys. 334, 460 (2017)

  33. 33

    H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Chem. Eng. Sci. 63, 5728 (2008)

  34. 34

    O. Pouliquen, M. Nicolas, P.D. Weidman, Phys. Rev. Lett. 79, 3640 (1997)

  35. 35

    Y. Nahmad-Molinari, J.C. Ruiz-Suárez, Phys. Rev. Lett. 89, 264302 (2002)

  36. 36

    A.B. Yu, X.Z. An, R.P. Zou, R.Y. Yang, K. Kendall, Phys. Rev. Lett. 97, 265501 (2006)

  37. 37

    C.X. Li, X.Z. An, R.Y. Yang, R.P. Zou, A.B. Yu, Powder Technol. 208, 617 (2011)

  38. 38

    L. Pournin, M. Weber, M. Tsukahara, J.A. Ferrez, M. Ramaioli, T.M. Liebling, Granular Matter 7, 119 (2005)

  39. 39

    V. Yadav, J.Y. Chastaing, A. Kudrolli, Phys. Rev. E 88, 052203 (2013)

  40. 40

    D.L. Blair, T. Neicu, A. Kudrolli, Phys. Rev. E 67, 031303 (2003)

  41. 41

    O. Carvente, G.G. Peraza-Mues, J.M. Salazar, J.C. Ruiz-Suárez, Granular Matter 14, 303 (2012)

  42. 42

    O. Carvente, J.C. Ruiz-Suarez, Phys. Rev. Lett. 95, 018001 (2005)

  43. 43

    F. Rietz, C. Radin, H.L. Swinney, M. Schroter, Phys. Rev. Lett. 120, 055701 (2018)

  44. 44

    K.E. Daniels, R.P. Behringer, Phys. Rev. Lett. 94, 168001 (2005)

  45. 45

    M. Gonzalez-Pinto, F. Borondo, Y. Martinez-Raton, E. Velasco, Soft Matter 13, 2571 (2017)

  46. 46

    M. Hanifpour, N. Francois, S.M. Vaez Allaei, T. Senden, M. Saadatfar, Phys. Rev. Lett. 113, 148001 (2014)

  47. 47

    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

  48. 48

    T. Kanzaki, M. Acevedo, I. Zuriguel, I. Pagonabarraga, D. Maza, R. Hidalgo, Eur. Phys. J. E 34, 133 (2011)

  49. 49

    M. Acevedo, R.C. Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Phys. Rev. E 87, 012202 (2013)

  50. 50

    M. Boton, N. Estrada, E. Azéma, F. Radjai, Eur. Phys. J. E 37, 116 (2014)

  51. 51

    K.J. Dong, C.C. Wang, A.B. Yu, Chem. Eng. Sci. 126, 500 (2015)

  52. 52

    W.Q. Zhong, A.B. Yu, X.J. Liu, Z.B. Tong, H. Zhang, Powder Technol. 302, 108 (2016)

  53. 53

    G. Lu, J.R. Third, C.R. Mueller, Chem. Eng. Sci. 127, 425 (2015)

  54. 54

    Y.L. Wu, X.Z. An, A.B. Yu, Powder Technol. 314, 89 (2017)

  55. 55

    R.Y. Yang, R.P. Zou, A.B. Yu, Phys. Rev. E 62, 3900 (2000)

  56. 56

    Z.Z. Xie, X.Z. An, Y.L. Wu, L. Wang, Q. Qian, X.H. Yang, Powder Technol. 317, 13 (2017)

  57. 57

    X.Z. An, R.Y. Yang, K.J. Dong, R.P. Zou, A.B. Yu, Phys. Rev. Lett. 95, 205502 (2005)

  58. 58

    J.W. Landry, G.S. Grest, L.E. Silbert, S.J. Plimpton, Phys. Rev. E 67, 041303 (2003)

  59. 59

    C. Song, P. Wang, H.A. Makse, Nature 453, 629 (2008)

Download references

Author information

Correspondence to Xizhong An.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., An, X., Qian, Q. et al. Dynamic modelling on the confined crystallization of mono-sized cubic particles under mechanical vibration. Eur. Phys. J. E 41, 139 (2018). https://doi.org/10.1140/epje/i2018-11744-2

Download citation

Keywords

  • Flowing Matter: Granular Materials