Advertisement

Dynamic modelling on the confined crystallization of mono-sized cubic particles under mechanical vibration

  • Yongli Wu
  • Xizhong An
  • Quan Qian
  • Lin Wang
  • Aibing Yu
Regular Article
  • 51 Downloads

Abstract.

The dynamic crystallization of cubic granular particles under three-dimensional mechanical vibration is numerically investigated by the discrete element method. The effects of operational conditions (vibration, container shape and system size) and particle properties (gravity and friction) on the formation of crystals and defects are discussed. The results show that the formation and growth of clusters with face-to-face aligned cubic particles can be easily realized under vibrations. Especially, a single crystal with both translational and orientational ordering can be reproduced in a rectangular container under appropriate vibrations. It is also found that the gravitational effect is beneficial for the ordering of a packing; the ordering of frictional particles can be improved significantly with an enlarged gravitational acceleration. The flat walls of a rectangular container facilitate the formation of orderly layered structures. The curved walls of a cylindrical container contribute to the formation of ring-like structures, whereas they also cause distortions and defects in the packing centers. Finally, it is shown that the crystallization of inelastic particles is basically accomplished by the pursuit of a better mechanical stability of the system, with decreasing kinetic and potential energies.

Graphical abstract

Keywords

Flowing Matter: Granular Materials 

References

  1. 1.
    H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T. Lippmann, G. Reiter, Nature 408, 839 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    V.N. Manoharan, Science 349, 1253751 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, A. Kumbhar, J. He, N.C. Das, K. Yang, J.Q. Wang, H. Wang, K.L. Stokes, J. Fang, J. Am. Chem. Soc. 130, 15203 (2008)CrossRefGoogle Scholar
  4. 4.
    L. Rossi, S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7, 4139 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Sun, Y. Xia, Science 298, 2176 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J. Henzie, M. Grunwald, A. Widmer-Cooper, P.L. Geissler, P. Yang, Nat. Mater. 11, 131 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Meijer, F. Hagemans, L. Rossi, D.V. Byelov, S.I. Castillo, A. Snigirev, I. Snigireva, A.P. Philipse, A.V. Petukhov, Langmuir 28, 7631 (2012)CrossRefGoogle Scholar
  8. 8.
    J.M. Meijer, A. Pal, S. Ouhajji, H.N. Lekkerkerker, A.P. Philipse, A.V. Petukhov, Nat. Commun. 8, 14352 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    L. Rossi, V. Soni, D.J. Ashton, D.J. Pine, A.P. Philipse, P.M. Chaikin, M. Dijkstra, S. Sacanna, W.T.M. Irvine, Proc. Natl. Acad. Sci. U.S.A. 112, 5286 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    C. Avci, I. Imaz, A. Carne-Sanchez, J.A. Pariente, N. Tasios, J. Perez-Carvajal, M.I. Alonso, A. Blanco, M. Dijkstra, C. Lopez, D. Maspoch, Nat. Chem. 10, 78 (2018)CrossRefGoogle Scholar
  11. 11.
    J.D. Bernal, Nature 183, 141 (1959)ADSCrossRefGoogle Scholar
  12. 12.
    J.L. Finney, Nature 266, 309 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    S. Torquato, F.H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Torquato, Y. Jiao, Nature 460, 876 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)CrossRefGoogle Scholar
  16. 16.
    J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    U. Agarwal, F.A. Escobedo, Nat. Mater. 10, 230 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Soft Matter 8, 8826 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, F. Sciortino, J. Chem. Phys. 138, 164505 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 111, 015501 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, J. Chem. Phys. 142, 054904 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    B.S. John, A. Stroock, F.A. Escobedo, J. Chem. Phys. 120, 9383 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    G. van Anders, D. Klotsa, N.K. Ahmed, M. Engel, S.C. Glotzer, Proc. Natl. Acad. Sci. U.S.A. 111, E4812 (2014)CrossRefGoogle Scholar
  25. 25.
    F. Smallenburg, L. Filion, M. Marechal, M. Dijkstra, Proc. Natl. Acad. Sci. U.S.A. 109, 17886 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    K. Sandomirski, S. Walta, J. Dubbert, E. Allahyarov, A.B. Schofield, H. Löwen, W. Richtering, S.U. Egelhaaf, Eur. Phys. J. ST 223, 439 (2014)CrossRefGoogle Scholar
  27. 27.
    E. Allahyarov, K. Sandomirski, S.U. Egelhaaf, H. Lowen, Nat. Commun. 6, 7110 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    B. Liu, T.H. Besseling, A. van Blaaderen, A. Imhof, Phys. Rev. Lett. 115, 078301 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    J. Russo, A.C. Maggs, D. Bonn, H. Tanaka, Soft Matter 9, 7369 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Chem. Eng. Sci. 62, 3378 (2007)CrossRefGoogle Scholar
  31. 31.
    P.A. Cundall, O.D.L. Strack, Geotechnique 29, 47 (1979)CrossRefGoogle Scholar
  32. 32.
    M. Spellings, R.L. Marson, J.A. Anderson, S.C. Glotzer, J. Chem. Phys. 334, 460 (2017)Google Scholar
  33. 33.
    H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Chem. Eng. Sci. 63, 5728 (2008)CrossRefGoogle Scholar
  34. 34.
    O. Pouliquen, M. Nicolas, P.D. Weidman, Phys. Rev. Lett. 79, 3640 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Nahmad-Molinari, J.C. Ruiz-Suárez, Phys. Rev. Lett. 89, 264302 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    A.B. Yu, X.Z. An, R.P. Zou, R.Y. Yang, K. Kendall, Phys. Rev. Lett. 97, 265501 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    C.X. Li, X.Z. An, R.Y. Yang, R.P. Zou, A.B. Yu, Powder Technol. 208, 617 (2011)CrossRefGoogle Scholar
  38. 38.
    L. Pournin, M. Weber, M. Tsukahara, J.A. Ferrez, M. Ramaioli, T.M. Liebling, Granular Matter 7, 119 (2005)CrossRefGoogle Scholar
  39. 39.
    V. Yadav, J.Y. Chastaing, A. Kudrolli, Phys. Rev. E 88, 052203 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    D.L. Blair, T. Neicu, A. Kudrolli, Phys. Rev. E 67, 031303 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    O. Carvente, G.G. Peraza-Mues, J.M. Salazar, J.C. Ruiz-Suárez, Granular Matter 14, 303 (2012)CrossRefGoogle Scholar
  42. 42.
    O. Carvente, J.C. Ruiz-Suarez, Phys. Rev. Lett. 95, 018001 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    F. Rietz, C. Radin, H.L. Swinney, M. Schroter, Phys. Rev. Lett. 120, 055701 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    K.E. Daniels, R.P. Behringer, Phys. Rev. Lett. 94, 168001 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    M. Gonzalez-Pinto, F. Borondo, Y. Martinez-Raton, E. Velasco, Soft Matter 13, 2571 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    M. Hanifpour, N. Francois, S.M. Vaez Allaei, T. Senden, M. Saadatfar, Phys. Rev. Lett. 113, 148001 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    T. Kanzaki, M. Acevedo, I. Zuriguel, I. Pagonabarraga, D. Maza, R. Hidalgo, Eur. Phys. J. E 34, 133 (2011)CrossRefGoogle Scholar
  49. 49.
    M. Acevedo, R.C. Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Phys. Rev. E 87, 012202 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    M. Boton, N. Estrada, E. Azéma, F. Radjai, Eur. Phys. J. E 37, 116 (2014)CrossRefGoogle Scholar
  51. 51.
    K.J. Dong, C.C. Wang, A.B. Yu, Chem. Eng. Sci. 126, 500 (2015)CrossRefGoogle Scholar
  52. 52.
    W.Q. Zhong, A.B. Yu, X.J. Liu, Z.B. Tong, H. Zhang, Powder Technol. 302, 108 (2016)CrossRefGoogle Scholar
  53. 53.
    G. Lu, J.R. Third, C.R. Mueller, Chem. Eng. Sci. 127, 425 (2015)CrossRefGoogle Scholar
  54. 54.
    Y.L. Wu, X.Z. An, A.B. Yu, Powder Technol. 314, 89 (2017)CrossRefGoogle Scholar
  55. 55.
    R.Y. Yang, R.P. Zou, A.B. Yu, Phys. Rev. E 62, 3900 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    Z.Z. Xie, X.Z. An, Y.L. Wu, L. Wang, Q. Qian, X.H. Yang, Powder Technol. 317, 13 (2017)CrossRefGoogle Scholar
  57. 57.
    X.Z. An, R.Y. Yang, K.J. Dong, R.P. Zou, A.B. Yu, Phys. Rev. Lett. 95, 205502 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    J.W. Landry, G.S. Grest, L.E. Silbert, S.J. Plimpton, Phys. Rev. E 67, 041303 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    C. Song, P. Wang, H.A. Makse, Nature 453, 629 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yongli Wu
    • 1
    • 2
  • Xizhong An
    • 1
  • Quan Qian
    • 1
  • Lin Wang
    • 1
  • Aibing Yu
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Laboratory for Simulation and Modelling of Particulate Systems, Department of Chemical EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations