Advertisement

Polynucleotide transport through lipid membrane in the presence of starburst cyclodextrin-based poly(ethylene glycol)s

  • Zahra Eskandani
  • Tony Le Gall
  • Tristan Montier
  • Pierre Lehn
  • Fabien Montel
  • Loïc Auvray
  • Cécile Huin
  • Philippe Guégan
Regular Article
  • 27 Downloads
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

Symmetrical cyclodextrin-based 14-arm star polymers with poly(ethylene glycol) PEG branches were synthesized and characterized. Interactions of the star polymers with lipid bilayers were studied by the “black lipid membrane” technique in order to demonstrate the formation of monomolecular artificial channels. The conditions for the insertion are mainly based on dimensions and amphiphilic properties of the star polymers, in particular the molar mass of the water-soluble polymer branches. Translocation of single-strand DNA (ssDNA) through those synthetic nanopores was investigated, and the close dimension between the cross-section of ssDNA and the cyclodextrin cavity led to an energy barrier that slowed down the translocation process.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

Supplementary material

10189_2018_11743_MOESM1_ESM.pdf (110 kb)
Supplementary material

References

  1. 1.
    T. Rapoport, Nature 450, 663 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    R.M. Brown jr., D. Montezinos, Proc. Natl. Acad. Sci. U.S.A. 73, 143 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    G. Guerriero, J. Fugelstad, V. Bulone, J. Integr. Plant Biol. 52, 161 (2010)CrossRefGoogle Scholar
  4. 4.
    C.M. Dobson, Nature 426, 884 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol. 4, 265 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    G.F. Schneider, S.W. Kowalczyk, V.E. Caldao, G. Pandraud, H.W. Zandbergen, L.M.K. Vandersypen, C. Dekker, Nano Lett. 10, 3161 (2010)ADSGoogle Scholar
  7. 7.
    T. Auger, J. Mathé, V. Viasnoff, G. Charron, J.-M. Di Meglio, L. Auvray, F. Montel, Phys. Rev. Lett. 113, 028302 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S.E. Henrickson, M. Misakian, B. Robertsin, J.J. Kasianowicz, Phys. Rev. Lett. 85, 3057 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    T.Z. Butler, J.H. Gundlach, M.A. Troll, Biophys. J. 90, 190 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Akeson, D. Branton, J.J. Kasianowicz, E. Brandin, D.W. Deamer, Biophys. J. 77, 3227 (1999)CrossRefGoogle Scholar
  11. 11.
    J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    G. Oukhaled, J. Mathé, A.-L. Biance, L. Bacri, J.-M. Betton, D. Lairez, J. Pelta, L. Auvray, Phys. Rev. Lett. 98, 158101 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Talaga, J. Li, J. Am. Chem. Soc. 131, 9287 (2009)CrossRefGoogle Scholar
  14. 14.
    L.J. Siskind, R.N. Kolesnik, M. Colombini, J. Biol. Chem. 277, 26796 (2002)CrossRefGoogle Scholar
  15. 15.
    S. Ghosal, Phys. Rev. Lett. 98, 238104 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A. Fennouri, R. Daniel, M. Pastoriza-Gallego, L. Auvray, J. Pelta, L. Bacri, Anal. Chem. 85, 8488 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Fennouri, C. Przybylski, M. Pastoriza-Gallego, L. Bacri, L. Auvray, R. Daniel, ACS Nano 6, 9672 (2012)CrossRefGoogle Scholar
  18. 18.
    A.G. Oukhaled, A.-L. Biance, J. Pelta, L. Auvray, L. Bacri, Phys. Rev. Lett. 108, 088104 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    V.V. Palyulin et al., Nat. Biotechnol. 26, 1146 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Howorka, Z. Siwy, Chem. Soc. Rev. 38, 2360 (2009)CrossRefGoogle Scholar
  21. 21.
    D.W. Deamer, M. Akeson, Trends Biotechnol. 18, 147 (2000)CrossRefGoogle Scholar
  22. 22.
    M. Wanunu, Phys. Life Rev. 9, 125 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Pastoriza-Gallego, L. Rabah, G. Gibrat, B. Thiébot, F. Gisou van der Goot, L. Auvray, J.-M. Betton, J. Pelta, J. Am. Chem. Soc. 133, 2923 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, G. Oukhaled, J.-M. Betton, L. Auvray, J. Pelta, ACS Chem. Biol. 7, 652 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Payet, M. Martinho, M. Pastoriza-Gallego, J.-M. Betton, L. Auvray, J. Pelta, J. Mathé, J. Anal. Chem. 84, 4071 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Kawano, A.E.P. Shibel, C. Cauley, H.S. White, Langmuir 25, 1233 (2009)CrossRefGoogle Scholar
  27. 27.
    C. Dekker, Nat. Nanotechnol. 2, 209 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    A. Hemamouche, A. Morin, E. Bourhis, B. Toury, E. Tarnaud, J. Mathé, P. Guégan, A. Madouri, X. Lafosse, C. Ulysse, S. Guilet, G. Patriarche, L. Auvray, F. Montel, Q. Wilmart, B. Plaçais, J. Yates, J. Gierak, Microelectron. Eng. 12, 87 (2014)CrossRefGoogle Scholar
  29. 29.
    A.L. Sisson, M. Raza Shah, S. Bhosale, S. Matile, Chem. Soc. Rev. 35, 1269 (2006)CrossRefGoogle Scholar
  30. 30.
    N.A.W. Bell, C.R. Engst, M. Ablay, G. Divitini, C. Ducati, T. Liedl, U.F. Keyser, Nano. Lett. 12, 512 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J.R. Burns, K. Göpfrich, J.W. Wood, V.V. Thacker, E. Stulz, U.F. Keyser, S. Howorka, Angew. Chem. Int. Ed. 52, 12069 (2013)CrossRefGoogle Scholar
  32. 32.
    J.R. Burns, N. Al-Juffali, S.M. Janes, S. Howorka, Angew. Chem. Int. Ed. 53, 12466 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Sakai, S. Matile, J. Am. Chem. Soc. 125, 14348 (2003)CrossRefGoogle Scholar
  34. 34.
    C. Huin, T. Le Gall, B. Barteau, B. Pitard, T. Montier, P. Lehn, H. Cheradame, P. Guégan, J. Gene Med. 13, 538 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Sebai, D. Milioni, A. Walrant, I. Alves, S. Sagan, C. Huin, L. Auvray, D. Massotte, S. Cribier, C. Tribet, Angew. Chem. Int. Ed. 51, 2132 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Cho, Y. Zhao, Langmuir 27, 4936 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Langecker, V. Arnaut, T.G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, F.C. Simmel, Science 338, 932 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich, Nature 336, 324 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    J. Montenegro, M.R. Ghadiri, J.R. Granja, Acc. Chem. Res. 46, 2955 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Danial, C.M.-N. Tran, K.A. Jolliffe, S. Perrier, J. Am. Chem. Soc. 136, 8018 (2014)CrossRefGoogle Scholar
  41. 41.
    I. Tabushi, Y. Kuroda, K. Yokota, Tetrahedron Lett. 23, 4601 (1982)CrossRefGoogle Scholar
  42. 42.
    M.J. Pregel, L. Jullien, J. Canceill, L. Lacombe, J.-M. Lehn, J. Chem. Soc. Perkin Trans. 2, 417 (1995)CrossRefGoogle Scholar
  43. 43.
    N. Madhavan, E.C. Robert, M.S. Gin, Angew. Chem. Int. Ed. 44, 7584 (2005)CrossRefGoogle Scholar
  44. 44.
    Y. El Ghoul, R. Renia, I. Faye, S. Rassou, V. Bennevault-Celton, C. Huin, P. Guégan, Chem. Commun. 49, 11647 (2013)CrossRefGoogle Scholar
  45. 45.
    H. Mamad-Hemouch, H. Ramoul, M. AbouTaha, L. Bacri, C. Huin, C. Przybylski, A. Oukhaled, B. Thiébot, G. Patriarche, N. Jarroux, J. Pelta, Nano Lett. 15, 7748 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    J.K.W. Chui, T.M. Fyles, Org. Biomol. Chem. 12, 3622 (2014)CrossRefGoogle Scholar
  47. 47.
    L. Bacri, A. Benkhaled, P. Guégan, L. Auvray, Langmuir 21, 5842 (2005)CrossRefGoogle Scholar
  48. 48.
    N. Badi, L. Auvray, P. Guégan, Adv. Mater. 21, 4054 (2009)CrossRefGoogle Scholar
  49. 49.
    W.H. Binder, Angew. Chem. Int. Ed. 47, 3092 (2008)CrossRefGoogle Scholar
  50. 50.
    E. Marie, S. Sagan, S. Cribier, C. Tribet, J. Membr. Biol. 247, 861 (2014)CrossRefGoogle Scholar
  51. 51.
    L. Chen, W. Si, L. Zhang, G. Tang, Z.T. Li, J.L. Hou, J. Am. Chem. Soc. 135, 2152 (2013)CrossRefGoogle Scholar
  52. 52.
    A.R. Khan, P. Forgo, K.J. Stine, V.T. D’Souza, Chem. Rev. 98, 1977 (1998)CrossRefGoogle Scholar
  53. 53.
    L.-Q. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, Nature 398, 686 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    L.-Q. Gu, S. Cheley, H. Bayley, J. Gen. Physiol. 118, 481 (2001)CrossRefGoogle Scholar
  55. 55.
    C. Huin, Z. Eskandani, N. Badi, A. Farcas, V. Bennevault-Celton, P. Guégan, Carbohydr. Polym. 94, 323 (2013)CrossRefGoogle Scholar
  56. 56.
    Z. Eskandani, C. Huin, P. Guégan, Carbohydr. Res. 346, 2414 (2011)CrossRefGoogle Scholar
  57. 57.
    V. Bennevault-Celton, A. Urbach, O. Martin, C. Pichon, P. Guégan, P. Midoux, Bioconjug. Chem. 22, 2404 (2011)CrossRefGoogle Scholar
  58. 58.
    P. Mueller, D.O. Rudin, H. Ti Tien, W.C. Wescott, Nature 194, 979 (1962)ADSCrossRefGoogle Scholar
  59. 59.
    S.M. Bezrukov, I. Vodyanoy, V.A. Parsegian, Nature 370, 279 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    I.G. Abidor, V.B. Arakelyan, L.V. Chernomordik, Y.A. Chizmadzhev, V.F. Pastushenko, M.R. Tarasevich, Bioelectrochem. Bioenergetics 6, 37 (1979)CrossRefGoogle Scholar
  61. 61.
    J. Mathé, A. Aksimentiev, D.R. Nelson, K. Schulten, A. Meller, Proc. Natl. Acad. Sci. U.S.A. 102, 12377 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    T.M. Fyles, Chem. Soc. Rev. 36, 335 (2007)CrossRefGoogle Scholar
  63. 63.
    A. Banerjee, E. Mikhailova, S. Cheley, L.-Q. Gu, M. Montoya, Y. Nagaoka, E. Gouaux, H. Bayley, Proc. Natl. Acad. Sci. U.S.A. 107, 8165 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    A. Halperin, Langmuir 15, 2525 (1999)CrossRefGoogle Scholar
  65. 65.
    J.M.S. Bartlett, D. Stirling, PCR Protocols, Methods in Molecular Biology, Vol. 226, 2nd edition (Humana Press, 2003) p. 3Google Scholar
  66. 66.
    P. Prangkio, D.K. Rao, K.D. Lance, M. Rubinshtein, J. Yang, M. Mayer, Biochim. Biophys. Acta 1808, 2877 (2011)CrossRefGoogle Scholar
  67. 67.
    M. Muthukumar, Polymer Translocation, Vol. 251 (CRC Press Taylor & Francis Group, London, New York, 2011)Google Scholar
  68. 68.
    M. Kondo, S. Nishikawa, J. Phys. Chem. B 111, 13451 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zahra Eskandani
    • 1
    • 2
  • Tony Le Gall
    • 3
    • 4
  • Tristan Montier
    • 3
    • 4
    • 5
    • 6
  • Pierre Lehn
    • 3
  • Fabien Montel
    • 7
  • Loïc Auvray
    • 7
  • Cécile Huin
    • 1
    • 2
  • Philippe Guégan
    • 8
  1. 1.LAMBEUniv Evry, CNRS, CEA, Université Paris-SaclayEvryFrance
  2. 2.LAMBEUniversité Cergy-Pontoise, Université Paris-SeineEvryFrance
  3. 3.INSERM UMR 1078, Faculté de MédecineUniversité de Bretagne Occidentale, Université Européenne de BretagneBrest Cedex 3France
  4. 4.Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioSUniversité de Bretagne Occidentale, Faculté de MédecineBrest Cedex 3France
  5. 5.Laboratoire de génétique moléculaire et d’histocompatibilitéCHRU de BrestBrest Cedex 3France
  6. 6.DUMGUniversité de Bretagne Occidentale, Faculté de MédecineBrest Cedex 3France
  7. 7.Matière et Systèmes Complexes, CNRS-UMR 7057Université Paris-DiderotParis cedex 13France
  8. 8.Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des PolymèresParisFrance

Personalised recommendations