Advertisement

On the inverse energy transfer in rotating turbulence

  • Michele Buzzicotti
  • Patricio Clark Di Leoni
  • Luca Biferale
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Rotating turbulence is an example of a three-dimensional system in which an inverse cascade of energy, from the small to the large scales, can be formed. While usually understood as a byproduct of the typical bidimensionalization of rotating flows, the role of the three-dimensional modes is not completely comprehended yet. In order to shed light on this issue, we performed direct numerical simulations of rotating turbulence where the 2D modes falling in the plane perpendicular to rotation are removed from the dynamical evolution. Our results show that while the two-dimensional modes are key to the formation of a stationary inverse cascade, the three-dimensional degrees of freedom play a non-trivial role in bringing energy to the larger scales also. Furthermore, we show that this backwards transfer of energy is carried out by the homochiral channels of the three-dimensional modes.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, New York, 1995)Google Scholar
  2. 2.
    Pierre Sagaut, Claude Cambon, Homogeneous Turbulence Dynamics (Springer, 2018)Google Scholar
  3. 3.
    Stephen B. Pope, Turbulent Flows (Cambridge University Press, 2000)Google Scholar
  4. 4.
    P.A. Davidson, Turbulence in Rotating, Stratified and Electrically Conducting Fluids (Cambridge University Press, 2013)Google Scholar
  5. 5.
    Robert H. Kraichnan, Phys. Fluids 10, 1417 (1967)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Leslie M. Smith, Jeffrey R. Chasnov, Fabian Waleffe, Phys. Rev. Lett. 77, 2467 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    P.D. Mininni, A. Pouquet, Phys. Rev. E 79, 026304 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    P.D. Mininni, A. Alexakis, A. Pouquet, Phys. Fluids 21, 015108 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    G.D. Nastrom, K.S. Gage, W.H. Jasperson, Nature 310, 36 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    Antonio Celani, Stefano Musacchio, Dario Vincenzi, Phys. Rev. Lett. 104, 184506 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Hussein Aluie, Matthew Hecht, Geoffrey K. Vallis, J. Phys. Oceanogr. 48, 225 (2017)CrossRefGoogle Scholar
  12. 12.
    Alexandros Alexakis, Pablo D. Mininni, Annick Pouquet, Astrophys. J. 640, 335 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    P.D. Mininni, Phys. Rev. E 76, 026316 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Luca Biferale, Stefano Musacchio, Federico Toschi, Phys. Rev. Lett. 108, 164501 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    L. Biferale, S. Musacchio, F. Toschi, J. Fluid Mech. 730, 309 (2013)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Alexandros Alexakis, J. Fluid Mech. 812, 752 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    James Y.K. Cho, Kristen Menou, Bradley M.S. Hansen, Sara Seager, Astrophys. J. 675, 817 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Thomas Le Reun, Benjamin Favier, Adrian J. Barker, Michael Le Bars, Phys. Rev. Lett. 119, 034502 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Horia Dumitrescu, Vladimir Cardos, AIAA J. 42, 408 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A. Sen, P.D. Mininni, D. Rosenberg, A. Pouquet, Phys. Rev. E 86, 036319 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L. Biferale, F. Bonaccorso, I.M. Mazzitelli, M.A.T. van Hinsberg, A.S. Lanotte, S. Musacchio, P. Perlekar, F. Toschi, Phys. Rev. X 6, 041036 (2016)Google Scholar
  22. 22.
    E. Horne, P.D. Mininni, Phys. Rev. E 88, 013011 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    F. Moisy, C. Morize, M. Rabaud, J. Sommeria, J. Fluid Mech. 666, 5 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    C. Cambon, L. Jacquin, J. Fluid Mech. 202, 295 (1989)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Cambon, N.N. Mansour, F.S. Godeferd, J. Fluid Mech. 337, 303 (1997)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Nazarenko, Wave Turbulence, 1st edition (Springer, 2011)Google Scholar
  27. 27.
    A.C. Newell, J. Fluid Mech. 35, 255 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    S. Galtier, Phys. Rev. E 68, 015301 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Qiaoning Chen, Shiyi Chen, Gregory L. Eyink, Darryl D. Holm, J. Fluid Mech. 542, 139 (2005)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Yarom, E. Sharon, Nat. Phys. 10, 510 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Campagne, B. Gallet, F. Moisy, P.-P. Cortet, Phys. Rev. E 91, 043016 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    P. Clark di Leoni, P.J. Cobelli, P.D. Mininni, P. Dmitruk, W.H. Matthaeus, Phys. Fluids 26, 035106 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    P. Clark di Leoni, P.D. Mininni, M.E. Brachet, Phys. Rev. A 92, 063632 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    P. Clark di Leoni, P.D. Mininni, J. Fluid Mech. 809, 821 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Waleffe, Phys. Fluids A 5, 677 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Michele Buzzicotti, Hussein Aluie, Luca Biferale, Moritz Linkmann, Energy transfer in turbulence under rotation, arXiv preprint, arXiv:1711.07054, 2017Google Scholar
  37. 37.
    L. Jacquin, O. Leuchter, C. Cambon, J. Mathieu, J. Fluid Mech. 220, 1 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    A. Alexakis, J. Fluid Mech. 769, 46 (2015)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    B. Gallet, J. Fluid Mech. 783, 412 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    E. Calzavarini, C.R. Doering, J.D. Gibbon, D. Lohse, A. Tanabe, F. Toschi, Phys. Rev. E 73, 035301 (2006)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    F. Bellet, F.S. Godeferd, J.F. Scott, C. Cambon, J. Fluid Mech. 562, 83 (2006)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    L.M. Smith, F. Waleffe, J. Fluid Mech. 451, 145 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Leslie M. Smith, Youngsuk Lee, J. Fluid Mech. 535, 111 (2005)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    L. Biferale, M. Buzzicotti, M. Linkmann, Phys. Fluids 29, 111101 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    H.P. Greenspan, Theory of Rotating Fluids (CUP Archive, Cambridge, 1968)Google Scholar
  46. 46.
    H.P. Greenspan, J. Fluid Mech. 36, 257 (1969)ADSCrossRefGoogle Scholar
  47. 47.
    Pedro F. Embid, Andrew J. Majda, Geophys. Astrophys. Fluid Dyn. 87, 1 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Leslie M. Smith, Fabian Waleffe, Phys. Fluids 11, 1608 (1999)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Ganapati Sahoo, Luca Biferale, Fluid Dyn. Res. 50, 011420 (2018)MathSciNetCrossRefGoogle Scholar
  50. 50.
    F. Waleffe, Phys. Fluids A: Fluid Dyn. 4, 350 (1992)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Peter Constantin, Andrew Majda, Commun. Math. Phys. 115, 435 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    Julian F. Scott, J. Fluid Mech. 741, 316 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Michele Buzzicotti
    • 1
  • Patricio Clark Di Leoni
    • 1
  • Luca Biferale
    • 1
  1. 1.Department of Physics & INFNUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations