Advertisement

Convincing evidence for the Halperin-Lubensky-Ma effect at the N-SmA transition in alkyloxycyanobiphenyl binary mixtures via a high-resolution birefringence study

  • M. C. Cetinkaya
  • S. Ustunel
  • H. Ozbek
  • S. Yildiz
  • J. Thoen
Regular Article
  • 17 Downloads

Abstract.

We present new high-resolution experimental data for the temperature behavior of optical birefringence for a series of mixture of the liquid crystals octyloxycyanobiphenyl (8OCB) and nonyloxycyanobiphenyl (9OCB) by using a rotating analyzer technique. The birefringence data have been used to probe the temperature dependence of the nematic order parameter \( S(T)\). We have then arrived at values for possible entropy discontinuities at the nematic-smectic A transition temperature \( T_{NA}\) from the detailed inspection of \( S(T)\) data in the immediate vicinity of \( T_{NA}\). The 9OCB mole fraction dependence of the obtained reduced entropy discontinuities has been shown to be well fitted with a crossover function which is itself consistent with the mean-field free energy expression with a non-zero cubic term arising from the Halperin-Lubensky-Ma (HLM) coupling. The obtained results are in good accordance with existing results from adiabatic scanning calorimetry (ASC). Our birefringence results and determined entropy discontinuities (consistent with calorimetry results) are in striking contrast with the recent birefringence results of Barman et al. (Phase Transit. 91, 58 (2018) published online 16 Aug. 2017) claiming second-order nematic-to-smectic A transitions for all mixtures. In this paper we present a possible explanation for this discrepancy. We have also extracted the effective critical exponent values \( \alpha_{eff}\) characterizing the critical fluctuations near the N-SmA transition for all compositions by using the fact that the temperature derivative of the order parameter \( S(T)\) near \( T_{NA}\) exhibits the same power-law divergence as the specific heat capacity. Measurable latent heat values were extracted from optical birefringence data for mole fractions of 9OCB where the \( \alpha_{eff}\) values are as low as 0.2, which is substantially lower than the tricritical value \( \alpha_{TCP}=0.5\). This is qualitatively different from what has been observed so far in other liquid-crystal systems. Together with ASC data, these pecuilarities of the 8OCB+9OCB system render further convincing evidence for the presence of the HLM coupling effect at the N-SmA transition phase transition line.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Oxford University Press, Oxford, 1993)Google Scholar
  2. 2.
    P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor and Francis, London, 1997)Google Scholar
  3. 3.
    S. Kumar (Editor), Liquid Crystals (Cambridge University Press, Cambridge, 2001)Google Scholar
  4. 4.
    C.W. Garland, G. Nounesis, Phys. Rev. E 49, 2964 (1994) and references thereinADSCrossRefGoogle Scholar
  5. 5.
    J. Thoen, C. Gordoyiannis, C. Glorieux, Liq. Cryst. 36, 669 (2009) and references thereinCrossRefGoogle Scholar
  6. 6.
    M. Marinelli, F. Mercuri, U. Zammit, in Heat Capacities: Liquids, Solutions, and Vapours, edited by E. Wilhelm, T.M. Letcher, (Royal Society of Chemistry, London, 2010) p. 367 and references thereinGoogle Scholar
  7. 7.
    P. Cusmin, M.R. de la Fuente, J. Salud, M.A. Perez-Jubindo, S. Diez-Berart, D.O. Lopez, J. Chem. Phys. B 111, 8974 (2007)CrossRefGoogle Scholar
  8. 8.
    M.B. Sied et al., J. Phys. Chem. B 109, 16284 (2005)CrossRefGoogle Scholar
  9. 9.
    E. Anesta, G.S. Iannacchione, C.W. Garland, Phys. Rev. E 70, 041703 (2004) and references thereinADSCrossRefGoogle Scholar
  10. 10.
    P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973)CrossRefGoogle Scholar
  11. 11.
    K. Kobayashi, Phys. Lett. A 31, 125 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    W.L. Mac Millan, Phys. Rev. A 4, 1238 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    B.I. Halperin, T.C. Lubensky, S.K. Ma, Phys. Rev. Lett. 32, 292 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    B.I. Halperin, T.C. Lubensky, Solid State Commun. 14, 997 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Anisimov, V.P. Voronov, E.E. Gorodetskii, V.E. Podneks, F. Kholmurodov, JETP Lett. 45, 425 (1987)ADSGoogle Scholar
  16. 16.
    J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. Lett. 52, 204 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    H. Marynissen, J. Thoen, W. Van Dael, Mol. Cryst. Liq. Cryst. 124, 195 (1985)CrossRefGoogle Scholar
  18. 18.
    M.A. Anisimov, P.E. Cladis, E.E. Gorodetskii, D.A. Huse, V.E. Podneks, V.G. Taratuta, W. van Saarloos, V.P. Voronov, Phys. Rev. A 41, 6749 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Anisimov, V.P. Voronov, A.O. Kulkov, V.N. Pethukhov, F. Kholmurodov, Mol. Cryst. Liq. Cryst. 150B, 399 (1987)Google Scholar
  20. 20.
    N. Tamblin, P. Oswald, A. Miele, J. Bechhoefer, Phys. Rev. E 51, 2223 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals (Taylor & Francis, Boca Raton, FL, 2006)Google Scholar
  22. 22.
    A. Yethiraj, J. Bechhoefer, Mol. Cryst. Liq. Cryst. 304, 301 (1997)CrossRefGoogle Scholar
  23. 23.
    A. Yethiraj, J. Bechhoefer, Phys. Rev. Lett. 84, 3642 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    A. Yethiraj, R. Mukhopadhyay, J. Bechhoefer, Phys. Rev. E 65, 021702 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    I. Lelidis, Phys. Rev. Lett. 86, 1267 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. A 26, 2886 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    G. Cordoyiannis, C.S.P. Tripathi, C. Glorieux, J. Thoen, Phys. Rev. E 82, 031707 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C.S.P. Tripathi, P. Losada-Perez, J. Leys, G. Cordoyiannis, C. Glorieux, J. Thoen, Eur. Phys. J. E 35, 54 (2012)CrossRefGoogle Scholar
  29. 29.
    M.C. Çetinkaya, S. Yildiz, H. Özbek, P. Losada-Perez, J. Leys, J. Thoen, Phys. Rev. E 88, 042502 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Yildiz, M.C. Çetinkaya, S. Üstünel, H. Özbek, J. Thoen, Phys. Rev. E 93, 062706 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M.B. Sied, J. Salud, D.O. Lopez, M. Barrio, J.L. Tamarit, Phys. Chem. Chem. Phys. 4, 2587 (2002)CrossRefGoogle Scholar
  32. 32.
    J. Salud, D.O. Lopez, S. Diez-Berart, M.R. de la Fuente, Liq. Cryst. 40, 293 (2013)CrossRefGoogle Scholar
  33. 33.
    M.B. Sied, D.O. Lopez, J.L. Tamarit, M. Barrio, Liq. Cryst. 29, 57 (2002)CrossRefGoogle Scholar
  34. 34.
    P. Cusmin et al., J. Phys. Chem. B 110, 26194 (2006)CrossRefGoogle Scholar
  35. 35.
    J. Thoen, Int. J. Mod. Phys. B 9, 2157 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    P.S. Clegg et al., Phys. Rev. E 67, 021703 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    R.J. Birgeneau, C.W. Garland, G.B. Kasting, B.M. Ocko, Phys. Rev. A 24, 2624 (1981)ADSCrossRefGoogle Scholar
  38. 38.
    C.W. Garland, G.B. Kasting, K.J. Lushington, Phys. Rev. Lett. 43, 1420 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    D.L. Johnson, C.F. Hayes, R.J. deHoff, C.A. Schantz, Phys. Rev. B 18, 4902 (1978)ADSCrossRefGoogle Scholar
  40. 40.
    J.D. LeGrange, J.M. Mochel, Phys. Rev. Lett. 45, 35 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    J.D. LeGrange, J.M. Mochel, Phys. Rev. A 23, 3215 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    A. Zywocinski, S.A. Wieczorek, J. Stecki, Phys. Rev. A 36, 1901 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    B. Barman, S.K. Sarkar, M.K. Das, Phase Transit. 91, 58 (2018) published online 16 August 2017CrossRefGoogle Scholar
  44. 44.
    S. Erkan, M. Çetinkaya, S. Yildiz, H. Özbek, Phys. Rev. E 86, 041705 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    K.C. Lim, J.T. Ho, Phys. Rev. Lett. 40, 944 (1978)ADSCrossRefGoogle Scholar
  46. 46.
    K.C. Lim, J.T. Ho, Mol. Cryst. Liq. Cryst. 47, 173 (1978)CrossRefGoogle Scholar
  47. 47.
    M. Vuks, Opt. Spectrosc. 20, 361 (1966)ADSGoogle Scholar
  48. 48.
    S. Chandrasekhar, N.V. Madhsudana, J. Phys. Colloq. 30, C4 (1969)CrossRefGoogle Scholar
  49. 49.
    A. Chakraborty, S. Chakraborty, M.K. Das, Phys. Rev. E 91, 032503 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    H. Özbek, S. Üstünel, E. Kutlu, M.C. Çetinkaya, J. Mol. Liq. 199, 275 (2014)CrossRefGoogle Scholar
  51. 51.
    S. Singh, Phys. Rep. 324, 107 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    B.V. Roie, J. Leys, K. Denolf, C. Glorieux, G. Pitsi, J. Thoen, Phys. Rev. E 72, 041702 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    M. Marinelli, F. Mercuri, Phys. Rev. E 61, 1616 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    P.K. Mukherjee, T.B. Mukherjee, Phys. Rev. B 52, 9964 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    I. Chirtoc, M. Chirtoc, C. Glorieux, J. Thoen, Liq. Cryst. 31, 229 (2004)CrossRefGoogle Scholar
  56. 56.
    S. Yildiz, H. Özbek, C. Glorieux, J. Thoen, Liq. Cryst. 34, 611 (2007)CrossRefGoogle Scholar
  57. 57.
    M. Simoes, D.S. Simeao, Phys. Rev. E 74, 051701 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    S.K. Sarkar, M.K. Das, Phase Transit. 89, 910 (2016)CrossRefGoogle Scholar
  59. 59.
    M.K. Das, P.C. Barman, S.K. Sarkar, Liq. Cryst. 43, 1268 (2016)CrossRefGoogle Scholar
  60. 60.
    S.K. Sarkar, A. Chakraborty, M.K. Das, Liq. Cryst. 43, 22 (2016)CrossRefGoogle Scholar
  61. 61.
    S.K. Sarkar, P.C. Barman, M.K. Das, Physica B 446, 80 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    M.S. Zakerhamidi, H. Rahimzadeh, Mol. Cryst. Liq. Cryst. 569, 92 (2012)CrossRefGoogle Scholar
  63. 63.
    M.S. Zakerhamidi, H. Rahimzadeh, J. Mol. Liq. 172, 41 (2012)CrossRefGoogle Scholar
  64. 64.
    M.K. Das, P.C. Barman, S.K. Sarkar, Eur. Phys. J. B 88, 175 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    S. Chakraborty, A. Chakraborty, M.K. Das, W. Weissflog, J. Mol. Liq. 219, 608 (2016)CrossRefGoogle Scholar
  66. 66.
    E.F. Gramsbergen, W.H. de Jeu, J. Chem. Soc. Faraday Trans. 2 84, 1015 (1988)CrossRefGoogle Scholar
  67. 67.
    D.A. Dunmur, in Physical Properties of Liquid Crystals: Nematics, edited by D.A. Dunmur, A. Fukuda, G.R. Luckhurst (The Institution of Electrical Engineers, London, 2002)Google Scholar
  68. 68.
    A.V. Kityk, P. Huber, Appl. Phys. Lett. 97, 153124 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    A.V. Kityk et al., Soft Matter 10, 4522 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    S. Calus, B. Jablonska, M. Busch, D. Rau, P. Huber, A.V. Kityk, Phys. Rev. E 89, 062501 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    P. Huber, M. Busch, S. Calus, A.V. Kityk, Phys. Rev. E 87, 042502 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    S. Yildiz, E.O. Zayim, Ö. Pekcan, H. Özbek, Int. J. Mod. Phys. B 24, 4305 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties (Oxford University Press, Oxford, 2010)Google Scholar
  74. 74.
    P.H. Keyes, Phys. Lett. A 67, 132 (1978)ADSCrossRefGoogle Scholar
  75. 75.
    M.A. Anisimov, S.R. Garber, V.S. Esipov, V.M. Mamnitskii, G.I. Ovodov, L.A. Smolenko, E.L. Sorkin, JETP 45, 1042 (1977)ADSGoogle Scholar
  76. 76.
    M.A. Anisimov, Mol. Cryst. Liq. Cryst. A 162, 1 (1988) Special Topics XXXIGoogle Scholar
  77. 77.
    D.S. Simeao, M. Simoes, Mol. Cryst. Liq. Cryst. 576, 88 (2013)CrossRefGoogle Scholar
  78. 78.
    M. Simoes, D.S. Simeao, K.E. Yamaguti, Liq. Cryst. 38, 935 (2011)CrossRefGoogle Scholar
  79. 79.
    S.J. Rzoska, A.D. Rzoska, P.K. Mukherjee, D.O. Lopez, J.C. Martinez-Garcia, J. Phys.: Condens. Matter 25, 245105 (2013)ADSGoogle Scholar
  80. 80.
    K.K. Chan, M. Deutsch, B.M. Ocko, P.S. Pershan, L.B. Sorensen, Phys. Rev. Lett. 54, 920 (1985)ADSCrossRefGoogle Scholar
  81. 81.
    M.E. Fisher, A. Aherony, Phys. Rev. Lett. 31, 1238 (1973)ADSCrossRefGoogle Scholar
  82. 82.
    A. Zywocinski, S.A. Wieczorek, J. Phys. Chem. B 101, 6970 (1997)CrossRefGoogle Scholar
  83. 83.
    J. Thoen, in Heat Capacities: Liquids, Solutions, and Vapours, edited by E. Wilhelm, T.M. Letcher (Royal Society of Chemistry, London, 2010) p. 287 and references thereinGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. C. Cetinkaya
    • 1
  • S. Ustunel
    • 1
  • H. Ozbek
    • 1
  • S. Yildiz
    • 1
  • J. Thoen
    • 2
  1. 1.Department of PhysicsIstanbul Technical UniversityIstanbulTurkey
  2. 2.Soft Matter and Biophysics, Department of Physics and AstronomyKU LeuvenLeuvenBelgium

Personalised recommendations