Advertisement

Growth of two-dimensional dodecagonal colloidal quasicrystals: Particles with isotropic pair interactions with two length scales vs. patchy colloids with preferred binding angles

  • Anja Gemeinhardt
  • Miriam Martinsons
  • Michael Schmiedeberg
Regular Article
  • 63 Downloads

Abstract.

We explore the growth of colloidal quasicrystals with dodecagonal symmetry in two dimensions by employing Brownian dynamics simulations. On the one hand, we study the growth behavior of structures obtained in a system of particles that interact according to an isotropic pair potential with two typical length scales. On the other hand, we consider patchy colloids that possess only one typical interaction length scale but prefer given binding angles. In case of the isotropic particles, we show that an imbalance in the competition between the two distances might lead to defects with wrong nearest-neighbor distances in the resulting structure. In contrast, during the growth of quasicrystals with patchy colloids such defects do not occur due to the lack of a second interaction length scale. However, as a downside, the diffusion of patchy particles along a surface typically is slower such that domains occur where the particles possess different phononic and phasonic offsets. Our results are important to understand how soft matter quasicrystals can be grown as perfectly as possible and to obtain a deeper insight into the mechanisms of the growth of quasicrystals in general.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    R. Lifshitz, Isr. J. Chem. 51, 1156 (2011)CrossRefGoogle Scholar
  4. 4.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    E. Maciá, Rep. Prog. Phys. 69, 397 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    W. Steurer, Chem. Soc. Rev. 41, 6719 (2012)CrossRefGoogle Scholar
  7. 7.
    X.B. Zeng, G. Ungar, Y. Liu, A.E. Dulcey, J.K. Hobbs, Nature 428, 157 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    X.B. Zeng, Curr. Opin. Colloid Interface Sci. 9, 384 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Takano, W. Kawashima, A. Noro, Y. Isono, N. Tanaka, T. Dotera, Y. Matsushita, J. Polym. Sci. Polym. Phys. 43, 2427 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    K. Hayashida, T. Dotera, A. Takano, Y. Matsushita, Phys. Rev. Lett. 98, 195502 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S. Fischer, A. Exner, K. Zielske, J. Perlich, S. Deloudi, W. Steurer, P. Lindner, S. Förster, Proc. Natl. Acad. Sci. U.S.A. 108, 1810 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    T. Dotera, Isr. J. Chem. 51, 1197 (2011)CrossRefGoogle Scholar
  13. 13.
    A.R. Denton, H. Löwen, Phys. Rev. Lett. 81, 469 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    M. Engel, H.-R. Trebin, Phys. Rev. Lett. 98, 225505 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    M. Engel, PhD Thesis (Universität Stuttgart, 2008)Google Scholar
  16. 16.
    M. Engel, M. Umezaki, H.-R. Trebin, T. Odagaki, Phys. Rev. B 82, 134206 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    K. Barkan, H. Diamant, R. Lifshitz, Phys. Rev. B 83, 172201 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    K. Barkan, M. Engel, R. Lifshitz, Phys. Rev. Lett. 113, 098304 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    T. Dotera, T. Oshiro, P. Ziherl, Nature 506, 208 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    G. Doppelbauer, E. Bianchi, G. Kahl, J. Phys.: Condens. Matter 22, 104105 (2010)ADSGoogle Scholar
  21. 21.
    M.N. van der Linden, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 136, 054904 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A. Reinhardt, F. Romano, J.P.K. Doye, Phys. Rev. Lett. 110, 255503 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    C.L. Phillips, E. Jankowski, M. Marval, S.C. Glotzer, Phys. Rev. E 86, 041124 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Phillips, E. Jankowski, B.J. Krishnatreya, K.V. Edmond, S. Sacanna, D.G. Grier, D.J. Pine, S.C. Glotzer, Soft Matter 10, 7468 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    É. Duguet, C. Hubert, C. Chomette, A. Perro, S. Ravaine, C. R. Chim. 19, 173 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Morphew, J. Shaw, C. Avins, D. Chakrabarti, ACS Nano 12, 2355 (2018)CrossRefGoogle Scholar
  27. 27.
    D. Levine, T.C. Lubensky, S. Ostlund, S. Ramaswamy, P.J. Steinhardt, J. Toner, Phys. Rev. Lett. 54, 1520 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    J.E.S. Socolar, T.C. Lubensky, P.J. Steinhardt, Phys. Rev. B 34, 3345 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    J.A. Kromer, M. Schmiedeberg, J. Roth, H. Stark, Phys. Rev. Lett. 108, 218301 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Kromer, M. Schmiedeberg, J. Roth, H. Stark, Eur. Phys. J. E 36, 25 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Sandbrink, M. Schmiedeberg, in Aperiodic Crystals (Springer, Berlin, 2013) p. 261Google Scholar
  32. 32.
    M. Martinsons, M. Sandbrink, M. Schmiedeberg, Acta Phys. Pol. 126, 568 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Hielscher, M. Martinsons, M. Schmiedeberg, S.C. Kapfer, J. Phys.: Condens. Matter 29, 094002 (2017)ADSGoogle Scholar
  34. 34.
    K. Nagao, T. Inuzuka, K. Nishimoto, K. Edagawa, Phys. Rev. Lett. 115, 075501 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    S. Förster, K. Meinel, R. Hammer, M. Trautmann, W. Widdra, Nature 502, 215 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S. Förster, J.I. Flege, E.M. Zollner, F.O. Schumann, R. Hammer, A. Bayat, K.-M. Schindler, J. Falta, W. Widdra, Ann. Phys. 529, 1600250 (2017)CrossRefGoogle Scholar
  37. 37.
    G.Y. Onoda, P.J. Steinhardt, D.P. DiVincenzo, J.E.S. Socolar, Phys. Rev. Lett. 60, 2653 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    C.T. Hann, J.E. Socolar, P.J. Steinhardt, Phys. Rev. B 94, 014113 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    C.V. Achim, M. Schmiedeberg, H. Löwen, Phys. Rev. Lett. 112, 255501 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    M. Schmiedeberg, C.V. Achim, J. Hielscher, S.C. Kapfer, H. Löwen, Phys. Rev. E 96, 012602 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    R. Lifshitz, D.M. Petrich, Phys. Rev. Lett. 79, 1261 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    M. Schmiedeberg, J. Roth, H. Stark, Phys. Rev. Lett. 97, 158304 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J. Rottler, M. Greenwood, B. Ziebarth, J. Phys.: Condens. Matter 24, 135002 (2012)ADSGoogle Scholar
  44. 44.
    M. Schmiedeberg, H. Stark, Phys. Rev. Lett. 101, 218302 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    J. Mikhael, J. Roth, L. Helden, C. Bechinger, Nature 454, 501 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    J. Mikhael, M. Schmiedeberg, S. Rausch, J. Roth, H. Stark, C. Bechinger, Proc. Natl. Acad. Sci. U.S.A. 107, 7214 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    M. Schmiedeberg, H. Stark, J. Phys.: Condens. Matter 24, 284101 (2012)Google Scholar
  48. 48.
    A.J. Archer, A.M. Rucklidge, E. Knobloch, Phys. Rev. Lett. 111, 165501 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    S. Savitz, M. Babadi, R. Lifshitz, IUCrJ 5, 247 (2018)CrossRefGoogle Scholar
  50. 50.
    T. Neuhaus, M. Marechal, M. Schmiedeberg, H. Löwen, Phys. Rev. Lett. 110, 118301 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    T. Neuhaus, M. Schmiedeberg, H. Löwen, New J. Phys. 15, 073013 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    T. Neuhaus, A. Härtel, M. Marechal, M. Schmiedeberg, H. Löwen, Eur. Phys. J. ST 223, 373 (2014)CrossRefGoogle Scholar
  53. 53.
    A.S. Keys, S.C. Glotzer, Phys. Rev. Lett. 99, 235503 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    H. Pattabhiraman, A.P. Gantapara, M. Dijkstra, J. Chem. Phys. 143, 164905 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    M. Engel, P.F. Damasceno, C.L. Phillips, S.C. Glotzer, Nat. Mater. 14, 109 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    R. Ryltsev, N. Chtchelkatchev, Soft Matter 13, 5076 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    M. Zu, P. Tan, N. Xu, Nat. Commun. 8, 2089 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    M. Martinsons, M. Schmiedeberg, J. Phys.: Condens. Matter 30, 255403 (2018)ADSGoogle Scholar
  59. 59.
    J. Hermisson, C. Richard, M. Baake, J. Phys. I 7, 1003 (1997)Google Scholar
  60. 60.
    T.A. Witten Jr., L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)ADSCrossRefGoogle Scholar
  61. 61.
    M. Oxborrow, C.L. Henley, Phys. Rev. B 48, 6966 (1993)ADSCrossRefGoogle Scholar
  62. 62.
    E. Tondl, M. Ramsay, P. Harrowell, A. Widmer-Cooper, J. Chem. Phys. 140, 104503 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    L. Korkidi, K. Barkan, R. Lifshitz, in Aperiodic Crystals (Springer, Berlin, 2013) pp. 117--124Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anja Gemeinhardt
    • 1
  • Miriam Martinsons
    • 1
  • Michael Schmiedeberg
    • 1
  1. 1.Institut für Theoretische Physik IFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations