Advertisement

Rough-wall turbulent Taylor-Couette flow: The effect of the rib height

  • Ruben A. Verschoof
  • Xiaojue Zhu
  • Dennis Bakhuis
  • Sander G. Huisman
  • Roberto Verzicco
  • Chao Sun
  • Detlef Lohse
Open Access
Regular Article
  • 54 Downloads

Abstract.

In this study, we combine experiments and direct numerical simulations to investigate the effects of the height of transverse ribs at the walls on both global and local flow properties in turbulent Taylor-Couette flow. We create rib roughness by attaching up to 6 axial obstacles to the surfaces of the cylinders over an extensive range of rib heights, up to blockages of 25% of the gap width. In the asymptotic ultimate regime, where the transport is independent of viscosity, we emperically find that the prefactor of the \(Nu_{\omega} \propto Ta^{1/2}\) scaling (corresponding to the drag coefficient \(C_{f}(Re)\) being constant) scales with the number of ribs \( N_r\) and by the rib height \(h^{1.71}\). The physical mechanism behind this is that the dominant contribution to the torque originates from the pressure forces acting on the rib which scale with the rib height. The measured scaling relation of \( N_{r} h^{1.71}\) is slightly smaller than the expected \( N_{r} h^{2}\) scaling, presumably because the ribs cannot be regarded as completely isolated but interact. In the counter-rotating regime with smooth walls, the momentum transport is increased by turbulent Taylor vortices. We find that also in the presence of transverse ribs these vortices persist. In the counter-rotating regime, even for large roughness heights, the momentum transport is enhanced by these vortices.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics 

References

  1. 1.
    M.P. Schultz, Biofouling 23, 331 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Ren, W. Yanhua, Phys. Fluids 23, 045102 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Phys. Fluids 22, 065103 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    K.A. Flack, M.P. Schultz, Phys. Fluids 26, 101305 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Nikuradse, Strömungsgesetze in rauhen Rohren, Forschungsheft 361 (VDI-Verlag, 1933)Google Scholar
  6. 6.
    C. Colebrook, J. Inst. Chem. Eng. 11, 113 (1939)Google Scholar
  7. 7.
    L.F. Moody, Trans. ASME 66, 671 (1944)Google Scholar
  8. 8.
    J. Jiménez, Annu. Rev. Fluid Mech. 36, 173 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Shockling, J.J. Allen, A.J. Smits, J. Fluid Mech. 564, 267 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M.P. Schultz, K.A. Flack, J. Fluid Mech. 580, 381 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A. Busse, M. Lützner, N.D. Sandham, Comput. Fluids 116, 129 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Chan, M. MacDonald, D. Chung, N. Hutchins, A. Ooi, J. Fluid Mech. 771, 743 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. MacDonald, L. Chan, D. Chung, N. Hutchins, A. Ooi, J. Fluid Mech. 804, 130 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Thakkar, A. Busse, N.D. Sandham, J. Fluid Mech. 837, R1 (2017)CrossRefGoogle Scholar
  15. 15.
    K.A. Flack, J. Fluid Mech. 842, 1 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    X. Zhu, R.A. Verschoof, D. Bakhuis, S.G. Huisman, R. Verzicco, C. Sun, D. Lohse, Nat. Phys. 14, 417 (2018)CrossRefGoogle Scholar
  17. 17.
    F.H. Busse, Physics 5, 4 (2012)CrossRefGoogle Scholar
  18. 18.
    M.A. Fardin, C. Perge, N. Taberlet, Soft Matter 10, 3523 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    S. Grossmann, D. Lohse, C. Sun, Annu. Rev. Fluid Mech. 48, 53 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    S. Grossmann, D. Lohse, Phys. Fluids 23, 045108 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R.H. Kraichnan, Phys. Fluids 5, 1374 (1962)ADSCrossRefGoogle Scholar
  22. 22.
    D.P.M. van Gils, S.G. Huisman, G.W. Bruggert, C. Sun, D. Lohse, Phys. Rev. Lett. 106, 024502 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    X. He, D. Funfschilling, E. Bodenschatz, G. Ahlers, New J. Phys. 14, 063030 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, G. Ahlers, Phys. Rev. Lett. 108, 024502 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    R. Ostilla-Mónico, E.P. van der Poel, R. Verzicco, S. Grossmann, D. Lohse, J. Fluid Mech. 761, 1 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    O. Cadot, Y. Couder, A. Daerr, S. Douady, A. Tsinober, Phys. Rev. E 56, 427 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    T.H. van den Berg, C. Doering, D. Lohse, D. Lathrop, Phys. Rev. E 68, 036307 (2003)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C. Doering, P. Constantin, Phys. Rev. E 53, 5957 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    R. Nicodemus, S. Grossmann, M. Holthaus, Phys. Rev. Lett. 79, 4170 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Webb, E.R.G. Eckert, R.J. Goldstein, Int. J. Heat Mass Transfer 14, 601 (1971)CrossRefGoogle Scholar
  31. 31.
    X. Zhu, R.J.A.M. Stevens, R. Verzicco, D. Lohse, Phys. Rev. Lett. 119, 154501 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    B. Eckhardt, S. Grossmann, D. Lohse, J. Fluid Mech. 581, 221 (2007)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D.P.M. van Gils, G.W. Bruggert, D.P. Lathrop, C. Sun, D. Lohse, Rev. Sci. Instrum. 82, 025105 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    D.P.M. van Gils, S.G. Huisman, S. Grossmann, C. Sun, D. Lohse, J. Fluid Mech. 706, 118 (2012)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Verzicco, P. Orlandi, J. Comput. Phys. 123, 402 (1996)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids 116, 10 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, J. Comput. Phys. 161, 35 (2000)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Yang, E. Balaras, J. Comput. Phys. 215, 12 (2006)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    R. Ostilla-Mónico, E.P. van der Poel, R. Verzicco, S. Grossmann, D. Lohse, Phys. Fluids 26, 015114 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    R. Ostilla-Mónico, R. Verzicco, D. Lohse, Phys. Fluids 27, 025110 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    X. Zhu, R. Verzicco, D. Lohse, J. Fluid Mech. 812, 279 (2017)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Avila, Phys. Rev. Lett. 108, 124501 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    H.J. Brauckmann, B. Eckhardt, J. Fluid Mech. 718, 398 (2013)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    S. Maretzke, B. Hof, M. Avila, J. Fluid Mech. 742, 254 (2014)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    M.S. Paoletti, D.P. Lathrop, Phys. Rev. Lett. 106, 024501 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ruben A. Verschoof
    • 1
  • Xiaojue Zhu
    • 1
  • Dennis Bakhuis
    • 1
  • Sander G. Huisman
    • 1
  • Roberto Verzicco
    • 2
    • 1
  • Chao Sun
    • 3
    • 1
  • Detlef Lohse
    • 1
    • 3
    • 4
  1. 1.Physics of Fluids, Max Planck Institute for Complex Fluid Dynamics, MESA+ institute and J. M. Burgers Center for Fluid DynamicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Dipartimento di Ingegneria IndustrialeUniversity of Rome “Tor Vergata”RomaItaly
  3. 3.Center for Combustion Energy and Department of Energy and Power EngineeringTsinghua UniversityBeijingChina
  4. 4.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations