Advertisement

Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation

  • Meng Xu
  • Haihu Liu
Regular Article
  • 55 Downloads

Abstract.

Immiscible two-phase flow in porous media is commonly encountered in industrial processes and environmental issues, such as enhanced oil recovery and the migration of fluids in an unsaturated zone. To deepen the current understanding of its underlying mechanism, this work focuses on the factors that influence the relative permeability and specific interfacial length of a two-phase flow in porous media, i.e., fluid saturation, viscosity ratio and contact angle. The lattice Boltzmann color-gradient model is adopted for pore-scale investigations, and the main findings are obtained as follows. Firstly, the relative permeability of each fluid increases as its saturation increases. The specific interfacial length first increases and then decreases as the saturation of the wetting fluid increases, and reaches a maximum when the permeabilities of both fluids are equal. Secondly, as the viscosity ratio of wetting to non-wetting fluids increases, the relative permeability of the wetting fluid will increase while that of the non-wetting fluid will decrease. The specific interfacial length will increase with increasing the viscosity difference between fluids. Finally, as the contact angle (measured from the wetting fluid) increases, the relative permeability of the wetting fluid overall increases while that of the non-wetting fluid decreases. Increasing contact angle always leads to a decrease in the specific interfacial length.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    Å. Haugen et al., Energy Fuels 24, 3020 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Muggeridge et al., Philos. Trans. 372, 20120320 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    S. Bachu, J.J. Adams, Energy Convers. Manag. 44, 3151 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Pruess, Int. J. Greenh. Gas Control 2, 37 (2008)CrossRefGoogle Scholar
  5. 5.
    D.E. Williams, D.G. Wilder, Groundwater 9, 50 (1971)CrossRefGoogle Scholar
  6. 6.
    T.L. Holzer, Groundwater 14, 138 (1976)CrossRefGoogle Scholar
  7. 7.
    H. Liu et al., Trans. Porous Media 99, 555 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    H. Liu, Y. Zhang, A.J. Valocchi, Phys. Fluids 27, 052103 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    B. Levaché, D. Bartolo, Phys. Rev. Lett. 113, 044501 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R. Wu, A. Kharaghani, E. Tsotsas, Chem. Eng. Sci. 139, 241 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Zhang et al., Acta Ophthalmol. 25, 3493 (2011)Google Scholar
  12. 12.
    K. Singh et al., Sci. Rep. 7, 5192 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Chen et al., J. Contam. Hydrol. 212, 14 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    H. Li, C. Pan, C.T. Miller, Phys. Rev. E 72, 026705 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    H. Huang, X. Lu, Phys. Fluids 21, 092104 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Erpelding et al., Phys. Rev. E 88, 053004 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    E.B. Janetti, M. Riva, A. Guadagnini, Water 9, 252 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Ahmadlouydarab, Z.S. Liu, J.J. Feng, Int. J. Multiphase Flow 47, 85 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Li et al., Adv. Water Resour. 116, 153 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A.Q. Raeini, M.J. Blunt, B. Bijeljic, Adv. Water Resour. 74, 116 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    E. Jettestuen et al., Water Resour. Res. 49, 4645 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Tartakovsky, P. Meakin, Adv. Water Resour. 29, 1464 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Algharbi, M.J. Blunt, Phys. Rev. E 71, 016308 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    L. Scarbolo et al., J. Comput. Phys. 234, 263 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    X. He, L.S. Luo, Phys. Rev. E 55, R6333 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    H. Liu et al., Comput. Geosci. 20, 777 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40, 62 (2004)Google Scholar
  29. 29.
    C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhang, Microfluid. Nanofluid. 10, 1 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Leclaire et al., Phys. Rev. E 95, 033306 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Gunstensen et al., Phys. Rev. A 43, 4320 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    T. Reis, T.N. Phillips, J. Phys. A: Math. Theor. 40, 4033 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    B. Ahrenholz et al., Adv. Water Resour. 31, 1151 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85, 046309 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    X. Shan, G. Doolen, J. Stat. Phys. 81, 379 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    Q. Kang, D. Zhang, S. Chen, Phys. Fluids 14, 3203 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    C.J. Landry, Z.T. Karpyn, O. Ayala, Water Resour. Res. 50, 3672 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    M.R. Swift et al., Phys. Rev. E. 54, 5041 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    H. Liang, P. Cheng, Int. J. Heat Mass Transfer 53, 1908 (2010)CrossRefGoogle Scholar
  44. 44.
    H. Liu et al., Phys. Rev. E 87, 013010 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    A. Fakhari et al., Adv. Water Resour. 114, 119 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    X. He, S. Chen, R. Zhang, J. Comput. Phys. 152, 642 (1999)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    J. Zhang, B. Li, D.Y. Kwok, Phys. Rev. E 69, 032602 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    J. Zhang, D.Y. Kwok, J. Colloid Interface Sci. 282, 434 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    H. Huang, M.C. Sukop, X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application (John Wiley & Sons, 2015)Google Scholar
  50. 50.
    H. Huang, L. Wang, X. Lu, Comput. Math. Appl. 61, 3606 (2011)MathSciNetCrossRefGoogle Scholar
  51. 51.
    J. Tölke et al., Philos. Trans. 360, 535 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    A.L. Dye et al., Water Resour. Res. 52, 2601 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Ba et al., Phys. Rev. E 94, 023310 (2016)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    N. Wang, H. Liu, C. Zhang, J. Rheol. 61, 741 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Yu et al., Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 416 (2018)CrossRefGoogle Scholar
  56. 56.
    Z. Xu, H. Liu, A.J. Valocchi, Water Resour. Res. 53, 3770 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    T. Akai, B. Bijeljic, M.J. Blunt, Adv. Water Resour. 116, 56 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    H. Huang, J.J. Huang, X.Y. Lu, Comput. Fluids 93, 164 (2014)MathSciNetCrossRefGoogle Scholar
  59. 59.
    J. Zhao et al., Water Resour. Res. 54, 1295 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    H. Liu et al., Adv. Water Resour. 73, 144 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    S. An et al., J. Nat. Gas Sci. Eng. 48, 138 (2017)CrossRefGoogle Scholar
  62. 62.
    S. Iglauer et al., Phys. Rev. E 82, 056315 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    E.S. Boek, M. Venturoli, Comput. Math. Appl. 59, 2305 (2010)MathSciNetCrossRefGoogle Scholar
  64. 64.
    P. Lallemand, L.S. Luo, Phys. Rev. E. 61, 6546 (2000)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    I. Ginzburg, Adv. Water Resour. 28, 1171 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)MathSciNetGoogle Scholar
  67. 67.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)MathSciNetGoogle Scholar
  68. 68.
    Z. Guo, C. Zheng, Int. J. Comput. Fluid Dyn. 22, 465 (2008)CrossRefGoogle Scholar
  69. 69.
    J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    M. Latva-Kokko, D.H. Rothman, Phys. Rev. E 71, 056702 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    S. Leclaire et al., Int. J. Numer. Methods Fluids 82, 451 (2016)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    E.W. Washburn, Phys. Rev. 17, 273 (1921)ADSCrossRefGoogle Scholar
  73. 73.
    F. Diotallevi et al., Eur. Phys. J. ST 166, 111 (2009)CrossRefGoogle Scholar
  74. 74.
    C.M. Pooley, H. Kusumaatmaja, J.M. Yeomans, Eur. Phys. J. ST 171, 63 (2009)CrossRefGoogle Scholar
  75. 75.
    D.P. Ziegler, J. Stat. Phys. 71, 1171 (1993)ADSCrossRefGoogle Scholar
  76. 76.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    X. He et al., J. Stat. Phys. 87, 115 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    B. Dong, Y.Y. Yan, W.Z. Li, Trans. Porous Media 88, 293 (2011)CrossRefGoogle Scholar
  79. 79.
    H. Zhao et al., Int. Commun. Heat Mass Transfer 85, 53 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations