Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation

  • 226 Accesses

  • 3 Citations

Abstract.

Immiscible two-phase flow in porous media is commonly encountered in industrial processes and environmental issues, such as enhanced oil recovery and the migration of fluids in an unsaturated zone. To deepen the current understanding of its underlying mechanism, this work focuses on the factors that influence the relative permeability and specific interfacial length of a two-phase flow in porous media, i.e., fluid saturation, viscosity ratio and contact angle. The lattice Boltzmann color-gradient model is adopted for pore-scale investigations, and the main findings are obtained as follows. Firstly, the relative permeability of each fluid increases as its saturation increases. The specific interfacial length first increases and then decreases as the saturation of the wetting fluid increases, and reaches a maximum when the permeabilities of both fluids are equal. Secondly, as the viscosity ratio of wetting to non-wetting fluids increases, the relative permeability of the wetting fluid will increase while that of the non-wetting fluid will decrease. The specific interfacial length will increase with increasing the viscosity difference between fluids. Finally, as the contact angle (measured from the wetting fluid) increases, the relative permeability of the wetting fluid overall increases while that of the non-wetting fluid decreases. Increasing contact angle always leads to a decrease in the specific interfacial length.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    Å. Haugen et al., Energy Fuels 24, 3020 (2010)

  2. 2

    A. Muggeridge et al., Philos. Trans. 372, 20120320 (2014)

  3. 3

    S. Bachu, J.J. Adams, Energy Convers. Manag. 44, 3151 (2003)

  4. 4

    K. Pruess, Int. J. Greenh. Gas Control 2, 37 (2008)

  5. 5

    D.E. Williams, D.G. Wilder, Groundwater 9, 50 (1971)

  6. 6

    T.L. Holzer, Groundwater 14, 138 (1976)

  7. 7

    H. Liu et al., Trans. Porous Media 99, 555 (2013)

  8. 8

    H. Liu, Y. Zhang, A.J. Valocchi, Phys. Fluids 27, 052103 (2015)

  9. 9

    B. Levaché, D. Bartolo, Phys. Rev. Lett. 113, 044501 (2014)

  10. 10

    R. Wu, A. Kharaghani, E. Tsotsas, Chem. Eng. Sci. 139, 241 (2016)

  11. 11

    C. Zhang et al., Acta Ophthalmol. 25, 3493 (2011)

  12. 12

    K. Singh et al., Sci. Rep. 7, 5192 (2017)

  13. 13

    Y. Chen et al., J. Contam. Hydrol. 212, 14 (2017)

  14. 14

    H. Li, C. Pan, C.T. Miller, Phys. Rev. E 72, 026705 (2005)

  15. 15

    H. Huang, X. Lu, Phys. Fluids 21, 092104 (2009)

  16. 16

    M. Erpelding et al., Phys. Rev. E 88, 053004 (2013)

  17. 17

    E.B. Janetti, M. Riva, A. Guadagnini, Water 9, 252 (2017)

  18. 18

    M. Ahmadlouydarab, Z.S. Liu, J.J. Feng, Int. J. Multiphase Flow 47, 85 (2012)

  19. 19

    Z. Li et al., Adv. Water Resour. 116, 153 (2018)

  20. 20

    A.Q. Raeini, M.J. Blunt, B. Bijeljic, Adv. Water Resour. 74, 116 (2014)

  21. 21

    E. Jettestuen et al., Water Resour. Res. 49, 4645 (2013)

  22. 22

    A.M. Tartakovsky, P. Meakin, Adv. Water Resour. 29, 1464 (2006)

  23. 23

    M.S. Algharbi, M.J. Blunt, Phys. Rev. E 71, 016308 (2005)

  24. 24

    L. Scarbolo et al., J. Comput. Phys. 234, 263 (2013)

  25. 25

    X. He, L.S. Luo, Phys. Rev. E 55, R6333 (1997)

  26. 26

    H. Liu et al., Comput. Geosci. 20, 777 (2016)

  27. 27

    S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)

  28. 28

    C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40, 62 (2004)

  29. 29

    C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)

  30. 30

    J. Zhang, Microfluid. Nanofluid. 10, 1 (2011)

  31. 31

    S. Leclaire et al., Phys. Rev. E 95, 033306 (2017)

  32. 32

    A.K. Gunstensen et al., Phys. Rev. A 43, 4320 (1991)

  33. 33

    T. Reis, T.N. Phillips, J. Phys. A: Math. Theor. 40, 4033 (2007)

  34. 34

    B. Ahrenholz et al., Adv. Water Resour. 31, 1151 (2008)

  35. 35

    H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85, 046309 (2012)

  36. 36

    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)

  37. 37

    X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)

  38. 38

    X. Shan, G. Doolen, J. Stat. Phys. 81, 379 (1995)

  39. 39

    Q. Kang, D. Zhang, S. Chen, Phys. Fluids 14, 3203 (2002)

  40. 40

    C.J. Landry, Z.T. Karpyn, O. Ayala, Water Resour. Res. 50, 3672 (2014)

  41. 41

    M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)

  42. 42

    M.R. Swift et al., Phys. Rev. E. 54, 5041 (1996)

  43. 43

    H. Liang, P. Cheng, Int. J. Heat Mass Transfer 53, 1908 (2010)

  44. 44

    H. Liu et al., Phys. Rev. E 87, 013010 (2013)

  45. 45

    A. Fakhari et al., Adv. Water Resour. 114, 119 (2018)

  46. 46

    X. He, S. Chen, R. Zhang, J. Comput. Phys. 152, 642 (1999)

  47. 47

    J. Zhang, B. Li, D.Y. Kwok, Phys. Rev. E 69, 032602 (2004)

  48. 48

    J. Zhang, D.Y. Kwok, J. Colloid Interface Sci. 282, 434 (2005)

  49. 49

    H. Huang, M.C. Sukop, X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application (John Wiley & Sons, 2015)

  50. 50

    H. Huang, L. Wang, X. Lu, Comput. Math. Appl. 61, 3606 (2011)

  51. 51

    J. Tölke et al., Philos. Trans. 360, 535 (2002)

  52. 52

    A.L. Dye et al., Water Resour. Res. 52, 2601 (2016)

  53. 53

    Y. Ba et al., Phys. Rev. E 94, 023310 (2016)

  54. 54

    N. Wang, H. Liu, C. Zhang, J. Rheol. 61, 741 (2017)

  55. 55

    Y. Yu et al., Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 416 (2018)

  56. 56

    Z. Xu, H. Liu, A.J. Valocchi, Water Resour. Res. 53, 3770 (2017)

  57. 57

    T. Akai, B. Bijeljic, M.J. Blunt, Adv. Water Resour. 116, 56 (2018)

  58. 58

    H. Huang, J.J. Huang, X.Y. Lu, Comput. Fluids 93, 164 (2014)

  59. 59

    J. Zhao et al., Water Resour. Res. 54, 1295 (2018)

  60. 60

    H. Liu et al., Adv. Water Resour. 73, 144 (2014)

  61. 61

    S. An et al., J. Nat. Gas Sci. Eng. 48, 138 (2017)

  62. 62

    S. Iglauer et al., Phys. Rev. E 82, 056315 (2010)

  63. 63

    E.S. Boek, M. Venturoli, Comput. Math. Appl. 59, 2305 (2010)

  64. 64

    P. Lallemand, L.S. Luo, Phys. Rev. E. 61, 6546 (2000)

  65. 65

    I. Ginzburg, Adv. Water Resour. 28, 1171 (2005)

  66. 66

    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)

  67. 67

    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)

  68. 68

    Z. Guo, C. Zheng, Int. J. Comput. Fluid Dyn. 22, 465 (2008)

  69. 69

    J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)

  70. 70

    M. Latva-Kokko, D.H. Rothman, Phys. Rev. E 71, 056702 (2005)

  71. 71

    S. Leclaire et al., Int. J. Numer. Methods Fluids 82, 451 (2016)

  72. 72

    E.W. Washburn, Phys. Rev. 17, 273 (1921)

  73. 73

    F. Diotallevi et al., Eur. Phys. J. ST 166, 111 (2009)

  74. 74

    C.M. Pooley, H. Kusumaatmaja, J.M. Yeomans, Eur. Phys. J. ST 171, 63 (2009)

  75. 75

    D.P. Ziegler, J. Stat. Phys. 71, 1171 (1993)

  76. 76

    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)

  77. 77

    X. He et al., J. Stat. Phys. 87, 115 (1997)

  78. 78

    B. Dong, Y.Y. Yan, W.Z. Li, Trans. Porous Media 88, 293 (2011)

  79. 79

    H. Zhao et al., Int. Commun. Heat Mass Transfer 85, 53 (2017)

Download references

Author information

Correspondence to Haihu Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Liu, H. Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation. Eur. Phys. J. E 41, 124 (2018). https://doi.org/10.1140/epje/i2018-11735-3

Download citation

Keywords

  • Flowing Matter: Interfacial phenomena