Advertisement

The curvature changes induced by grafted polymers in microemulsions

  • Jyotsana Lal
Regular Article
  • 30 Downloads
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

The results on Winsor phases, droplet and bicontinous microemulsions phases with polymer-grafted lipids studied by Small Angle Neutron Scattering (SANS) are reported below, together with the contrast variation techniques used to characterize the average curvature in the system. We have clearly shown that polymer-grafted lipids change the interaction between microemulsion droplets --it need not be just repulsive but could also be attractive. They induce structural changes or bring about complete phase changes as observed visually in the Winsor phases when added in sufficient amounts. In the bicontinous microemulsion phases, the polymer-grafted lipids decrease the persistence length, hence the bending rigidity, increase the apparent average thickness of the film, and cause a complex deformation of the film which brings about a negative curvature change at a semi-local scale. Contrary to the naive prediction that the polymer-grafted lipids should increase membrane rigidity our experiments show a decrease. This is a subtle effect caused by perhaps an indirect coupling between film curvature and concentration fluctuations.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

References

  1. 1.
    J. Lal, L. Auvray, J. Phys. II 4, 2119 (1994)Google Scholar
  2. 2.
    J. Lal, B. Farago, L. Auvray, Materials Research Society Symposium Proceedings - Dynamics in Small Confining Systems II, edited by J.M. Drake, J. Klafter, R. Kopelman, S.M. Torian, Vol. 366 (MRS, 1994) p. 427Google Scholar
  3. 3.
    P.G. de Gennes, C. Taupin, J. Phys. Chem. 86, 2294 (1982)CrossRefGoogle Scholar
  4. 4.
    W. Helfrich, Z. Naturforsch. Teil C 28, 693 (1973)CrossRefGoogle Scholar
  5. 5.
    P.G. de Gennes, J. Phys. Chem. 94, 8407 (1990)CrossRefGoogle Scholar
  6. 6.
    J.T. Brooks, C.M. Marques, M.E. Cates, Europhys. Lett. 14, 713 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    S. Leibler, J. Phys. (Paris) 47, 507 (1986)CrossRefGoogle Scholar
  8. 8.
    W. Helfrich, M.M. Kozlov, J. Phys. II 3, 287 (1993)Google Scholar
  9. 9.
    M.M. Kozlov, W. Helfrich, Langmuir 8, 2792 (1992)CrossRefGoogle Scholar
  10. 10.
    W. Helfrich, M.M. Kozlov, J. Phys. II 4, 1427 (1994)Google Scholar
  11. 11.
    D. Andelman, T. Kawakatsu, K. Kawasaki, Europhys. Lett. 19, 57 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    R. Lipowsky, Europhys. Lett. 30, 197 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    T. Bickel, C. Marques, C. Jeppesen, Phys. Rev. E 62, 1124 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    K. Hristova, D. Needham, Macromolecules 28, 991 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    R. Joannic, L. Auvray, D.D. Lasic, Phys. Rev. Lett. 78, 3402 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    H. Endo et al., J. Chem. Phys. 115, 580 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M. Mihailescu et al., J. Chem. Phys. 115, 9563 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    I. Tsafrir et al., Phys. Rev. Lett. 86, 1138 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    T. Auth, G. Gompper, Phys. Rev. E 72, 031904 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Bauer et al., Nat. Commun. 6, 8117 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Yang et al., Phys. Rev. Lett. 80, 2729 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    B.-S. Yang et al., Langmuir 17, 5834 (2001)CrossRefGoogle Scholar
  23. 23.
    D. Bochicchio et al., Sci. Rep. 7, 6357 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    P. Sens, L. Johannes, P. Bassereau, Curr. Opin. Cell Biol. 20, 476 (2008)CrossRefGoogle Scholar
  25. 25.
    P.A. Winsor, Trans. Faraday Soc. 44, 376 (1948)CrossRefGoogle Scholar
  26. 26.
    L. Auvray et al., Physica B 136, 281 (1986)CrossRefGoogle Scholar
  27. 27.
    L. Auvray et al., J. Phys. (Paris) 45, 913 (1984)CrossRefGoogle Scholar
  28. 28.
    L. Auvray et al., J. Phys. Chem. 88, 4586 (1984)CrossRefGoogle Scholar
  29. 29.
    L. Auvray, P. Auroy, Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems, edited by P. Lindner, T. Zemb (North-Holland, Amsterdam, 1991)Google Scholar
  30. 30.
    B. Widom, J. Chem. Phys. 81, 1030 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    P.G. de Gennes, J. Jouffroy, P. Levinson, J. Phys. (Paris) 43, 1241 (1982)CrossRefGoogle Scholar
  32. 32.
    Y. Talmon, S. Prager, Nature 267, 333 (1977)ADSCrossRefGoogle Scholar
  33. 33.
    P. Pieruschka, S.A. Safran, Europhys. Lett. 22, 625 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    M. Teubner, R. Strey, J. Chem. Phys. 87, 3195 (1987)ADSCrossRefGoogle Scholar
  35. 35.
    L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 690 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    W. Helfrich, J. Phys. (Paris) 46, 1263 (1985)CrossRefGoogle Scholar
  37. 37.
    S.A. Safran, L.A. Turkevich, P.A. Pincus, J. Phys. (Paris) Lett. 45, 69 (1984)CrossRefGoogle Scholar
  38. 38.
    L. Auvray, PhD Thesis, Université de Paris Sud, France (1985)Google Scholar
  39. 39.
    A. Onuki, J. Phys. Soc. Jpn. 62, 385 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    H.E. Warriner et al., Science 271, 969 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    B. Jakobs et al., Langmuir 15, 6707 (1999)CrossRefGoogle Scholar
  42. 42.
    F. Marchal et al., Soft Matter 5, 4006 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    T. Bickel, C.M. Marques, Eur. Phys. J. E 9, 349 (2002)CrossRefGoogle Scholar
  44. 44.
    S. Leibler, D. Andelman, J. Phys. (Paris) 48, 2013 (1987)CrossRefGoogle Scholar
  45. 45.
    C.M. Marques, J.B. Fournier, Europhys. Lett. 35, 361 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNorthern Illinois UniversityDeKalbUSA

Personalised recommendations