Advertisement

Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and \( \alpha\)-hemolysin nanopores

  • Aziz Fennouri
  • Joana Ramiandrisoa
  • Laurent Bacri
  • Jérôme Mathé
  • Régis Daniel
Regular Article
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

Seeking new tools for the analysis of glycosaminoglycans, we have compared the translocation of anionic oligosaccharides from hyaluronic acid using aerolysin and \(\alpha\)-hemolysin nanopores. We show that pores of similar channel length and diameter lead to distinct translocation behavior of the same macromolecules, due to different structural properties of the nanopores. When passing from the vestibule side of the nanopores, short hyaluronic acid oligosaccharides could be detected during their translocation across an aerolysin nanopore but not across an \(\alpha\)-hemolysin nanopore. We were however able to detect longer oligosaccharide fragments, resulting from the in situ enzymatic depolymerization of hyaluronic acid polysaccharides, with both nanopores, meaning that short oligosaccharides were crossing the \(\alpha\)-hemolysin nanopore with a speed too high to be detected. The translocation speed was an order of magnitude higher across \(\alpha\)-hemolysin compared to aerolysin. These results show that the choice of a nanopore to be used for resistive pulse sensing experiments should not rely only on the diameter of the channel but also on other parameters such as the charge repartition within the pore lumen.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

References

  1. 1.
    H. Wang et al., ACS Sens. 3, 251 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Cao et al., Nat. Protoc. 12, 1901 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Huang et al., Nat. Nanotechnol. 10, 986 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    A. Biesemans, M. Soskine, G. Maglia, Nano Lett. 15, 6076 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    E.C. Yusko et al., Nat. Nanotechnol. 12, 360 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    W. Si, A. Aksimentiev, ACS Nano 11, 7091 (2017)CrossRefGoogle Scholar
  7. 7.
    F. Piguet et al., Nat. Commun. 9, 966 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Chavis et al., ACS Sens. 2, 1319 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Huang et al., Nat. Commun. 8, 935 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Fennouri et al., ACS Nano 6, 9672 (2012)CrossRefGoogle Scholar
  11. 11.
    F. Rivas et al., Nat. Commun. 9, 1037 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Bishop, M. Schuksz, J.D. Esko, Nature 446, 1030 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A. Nikos et al., FEBS J. 279, 1177 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Jin et al., Proc. Natl. Acad. Sci. U.S.A. 94, 14683 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    S.T. Olson et al., J. Biol. Chem. 267, 12528 (1992)Google Scholar
  16. 16.
    L. Ng et al., J. Struct. Biol. 143, 242 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Rigozzi et al., J. Biomech. 46, 813 (2013)CrossRefGoogle Scholar
  18. 18.
    L. Bacri et al., Biochem. Biophys. Res. Commun. 412, 561 (2011)CrossRefGoogle Scholar
  19. 19.
    A.J. Day, G.D. Prestwich, J. Biol. Chem. 277, 4585 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Fennouri et al., Anal. Chem. 85, 8488 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Stefureac et al., Biochemistry 45, 9172 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Merstorf et al., ACS Chem. Biol. 7, 652 (2012)CrossRefGoogle Scholar
  23. 23.
    P. Mueller et al., J. Phys. Chem. 67, 534 (1963)CrossRefGoogle Scholar
  24. 24.
    M. Pastoriza-Gallego et al., J. Am. Chem. Soc. 133, 2923 (2011)CrossRefGoogle Scholar
  25. 25.
    S.P. Howard, J.T. Buckley, Mol. Gen. Genet. MGG 204, 289 (1986)CrossRefGoogle Scholar
  26. 26.
    M. Moniatte et al., FEBS Lett. 384, 269 (1996)CrossRefGoogle Scholar
  27. 27.
    V. Cabiaux et al., Biochemistry 36, 15224 (1997)CrossRefGoogle Scholar
  28. 28.
    L. Payet et al., Biophys. J. 109, 1600 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    G. Baaken et al., ACS Nano 9, 6443 (2015)CrossRefGoogle Scholar
  30. 30.
    O.V. Krasilnikov, C.G. Rodrigues, S.M. Bezrukov, Phys. Rev. Lett. 97, 018301 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    A. Meller et al., Proc. Natl. Acad. Sci. U.S.A. 97, 1079 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    H. Meng et al., J. Pept. Sci. 16, 701 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Christensen et al., J. Pept. Sci. 17, 726 (2011)CrossRefGoogle Scholar
  34. 34.
    D. Pedone, M. Firnkes, U. Rant, Anal. Chem. 81, 9689 (2009)CrossRefGoogle Scholar
  35. 35.
    A. Oukhaled et al., ACS Chem. Biol. 7, 1935 (2012)CrossRefGoogle Scholar
  36. 36.
    C.T.A. Wong, M. Muthukumar, J. Chem. Phys. 133, 045101 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M. Soskine et al., Nano Lett. 12, 4895 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    L. Song et al., Science 274, 1859 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    S.Y. Noskov, W. Im, B. Roux, Biophys. J. 87, 2299 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    M. Misakian, J.J. Kasianowicz, J. Membr. Biol. 195, 137 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Bhattacharya et al., J. Phys. Chem. C 115, 4255 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Boukhet et al., Nanoscale 8, 18352 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Muzard et al., Biophys. J. 98, 2170 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    K.P. Vercruysse, A.R. Lauwers, J.M. Demeester, Biochem. J. 310, 55 (1995)CrossRefGoogle Scholar
  45. 45.
    J.J. Kasianowicz et al., Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aziz Fennouri
    • 1
  • Joana Ramiandrisoa
    • 1
  • Laurent Bacri
    • 1
  • Jérôme Mathé
    • 1
  • Régis Daniel
    • 1
  1. 1.Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l’EnvironnementEvryFrance

Personalised recommendations