Advertisement

Effective temperature of active fluids and sheared soft glassy materials

  • Saroj Kumar Nandi
  • N. S. Gov
Regular Article
  • 16 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

The dynamics within active fluids, driven by internal activity of the self-propelled particles, is a subject of intense study in non-equilibrium physics. These systems have been explored using simulations, where the motion of a passive tracer particle is followed. Similar studies have been carried out for a soft glassy material that is driven by shearing its boundaries. In both types of systems the non-equilibrium motion have been quantified by defining a set of “effective temperatures”, using both the tracer particle kinetic energy and the fluctuation-dissipation relation. We demonstrate that these effective temperatures extracted from the many-body simulations fit analytical expressions that are obtained for a single active particle inside a visco-elastic fluid. This result provides testable predictions and suggests a unified description for the dynamics inside active systems.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    L. Giomi, T.B. Liverpool, M.C. Marchetti, Phys. Rev. E 81, 051908 (2010)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Berthier, J. Kurchan, Nat. Phys. 9, 310 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Loi, S. Mossa, L.F. Cugliandolo, Phys. Rev. E 77, 051111 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Loi, S. Mossa, L.F. Cugliandolo, Soft Matter 7, 10193 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    D. Levis, L. Berthier, EPL 111, 60006 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    L. Berthier, J.-L. Barrat, Phys. Rev. Lett. 89, 095702 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    L. Berthier, J.-L. Barrat, J. Chem. Phys. 116, 6228 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    H.A. Makse, J. Kurchan, Nature 415, 614 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    F.Q. Potiguar, H.A. Makse, Eur. Phys. J. E 19, 171 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    C. Song, P. Wang, H.A. Makse, Proc. Natl. Acad. Sci. U.S.A. 102, 2299 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    P. Wang, C. Song, C. Briscoe, H.A. Makse, Phys. Rev. E 77, 061309 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    P.C. Hohenberg, B.I. Shraiman, Physica D 37, 109 (1989)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55, 3898 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    L.F. Cugliandolo, J. Phys. A: Math. Theor. 44, 483001 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Shen, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 101, 8547 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S. Wang, P.G. Wolynes, J. Chem. Phys. 135, 051101 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Wang, P.G. Wolynes, J. Chem. Phys. 138, 12A521 (2013)CrossRefGoogle Scholar
  19. 19.
    T. Lu, J. Hasty, P.G. Wolynes, Biophys. J. 91, 84 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Nandi, N.S. Gov, Soft Matter 13, 7609 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    R. Mandal, P.J. Bhuyan, M. Rao, C. Dasgupta, Soft Matter 12, 6268 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Nandi, R. Mandal, P.J. Bhuyan, C. Dasgupta, M. Rao, N.S. Gov, Proc. Natl. Acad. Sci. U.S.A. 115, 7688 (2018)CrossRefGoogle Scholar
  23. 23.
    E. Ben-Isaac, É. Fodor, P. Visco, F. van Wijland, N.S. Gov, Phys. Rev. E 92, 012716 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M.K. Nandi, A. Banerjee, C. Dasgupta, S.M. Bhattacharyya, Phys. Rev. Lett. 119, 265502 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    E. Agoritsas, T. Maimbourg, F. Zamponi, arXiv preprint, arXiv:1808.00236 (2018)Google Scholar
  26. 26.
    E. Ben-Isaac, Y. Park, G. Popescu, F.L. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Preisler, M. Dijkstra, Soft Matter 12, 6043 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    G. Tarjus, D. Kivelson, P. Viot, J. Phys.: Condens. Matter 12, 6497 (2000)ADSGoogle Scholar
  29. 29.
    T.S. Majmudar, R.P. Behringer, Nature 435, 1079 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    W. Losert, L. Bocquet, T. Lubensky, J.P. Gollub, Phys. Rev. Lett. 85, 1428 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    E. Flenner, G. Szamel, L. Berthier, Soft Matter 12, 7136 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biological PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations