Advertisement

Self-propulsion of droplets driven by an active permeating gel

  • R. Kree
  • A. Zippelius
Regular Article

Abstract.

We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equation, the porous medium is characterised by a single lengthscale \(\ell\) --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of \(\ell\). We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit \(\ell\rightarrow\infty\), corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, \(\ell\rightarrow 0\), corresponding to a space filling gel, is singular and not equivalent to Darcy’s equation, which cannot account for self-propulsion.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

References

  1. 1.
    E. Lauga, T. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Goldstein, J.W. van de Meent, Interface Focus 5, 20150030 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Kree, P. Burada, A. Zippelius, J. Fluid Mech. 821, 595 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    W. Alt, M. Dembo, Math. Biosci. 156, 207 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Spitzer, B. Poolman, FEBS Lett. 587, 2094 (2013)CrossRefGoogle Scholar
  6. 6.
    E. Moeendarbary, L. Valon, M. Fritzsche, A. Harris, D. Moulding, A. Thrasher, E. Stride, L. Mahadevan, G.T. Charras, Nat. Mat. 12, 253 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Radszuweit, S. Alonso, H. Engel, M. Bär, Phys. Rev. Lett. 110, 138102 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    C.A. Weber, C.H. Rycroft, L. Mahadevan, arXiv:1710.03633 (2017)Google Scholar
  9. 9.
    A.C. Callan-Jones, F. Jülicher, New J. Phys. 13, 093027 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Köhler, V. Schaller, A. Bausch, Nat. Mat. 10, 462468 (2011)CrossRefGoogle Scholar
  11. 11.
    F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Science 345, 1135 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Weiss, J. Frohnmayer, L. Benk, B. Haller, J.J.T. Heitkamp, M. Börsch, R. Lira, R. Dimova, R. Lipowsky, E. Bodenschatz, J. Baret, T. Vidakovic-Koch, K. Sundmacher, I. Platzman, J. Spatz, Nat. Mat. 17, 89 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Zwicker, R. Seyboldt, C.A. Weber, A.A. Hyman, F. Jülicher, Nat. Phys. 13, 408 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Zwicker, A. Hyman, F. Jülicher, Phys. Rev. E 92, 012317 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    L. Durlofsky, J. Brady, Phys. Fluids 30, 3329 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    J. Rubinstein, S. Torquato, J. Fluid Mech. 206, 25 (1989)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Whitaker, Transp. Porous Media 1, 3 (1986)CrossRefGoogle Scholar
  18. 18.
    L. Wang, L. Wang, Z. Guo, J. Mi, Int. J. Heat Mass Transfer 82, 357 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Tamayol, M. Bahrami, Phys. Rev. E 83, 046314 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Koponen, M. Kataja, J. Timonen, Phys. Rev. E 56, 3319 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    A.I. Koponen, D. Kandhai, E. Hellen, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot, J. Timonen, Phys. Rev. Lett. 80, 716 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    P. Carman, Flow of Gases Through Porous Media (Butterworths, London, 1956)Google Scholar
  23. 23.
    J. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transfer 38, 2635 (1995)CrossRefGoogle Scholar
  24. 24.
    W. Jäger, A. Mikelic, N. Neuss, IAM J. Sci. Comput. 22, 2006 (2001)Google Scholar
  25. 25.
    M. Minale, Phys. Fluids 26, 123101 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M. Minale, Phys. Fluids 26, 123102 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965)Google Scholar
  28. 28.
    M. Lighthill, Commun. Pure Appl. Math. 9, 109 (1952)CrossRefGoogle Scholar
  29. 29.
    A. Shapere, F. Wilczek, J. Fluid Mech. 198, 587 (1989)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Vafai (Editor), Handbook of Porous Media (Taylor and Francis, 2005)Google Scholar
  31. 31.
    M. Erhardt, Progress in Computational Physics (PiCP): Coupled Fluid Flow in Energy, Biology and Environmental Research, Vol. 2 (Bentham, 2012) Chapt. 1, pp. 3--12Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Georg-August-Universität Göttingen, Institut für Theoretische PhysikGöttingenGermany

Personalised recommendations