Advertisement

Particle-laden two-dimensional elastic turbulence

  • Himani Garg
  • Enrico Calzavarini
  • Gilmar Mompean
  • Stefano Berti
Regular Article
  • 16 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

The aggregation properties of heavy inertial particles in the elastic turbulence regime of an Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the properties of the advecting viscoelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, particles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    A. Groisman, V. Steinberg, Nature 405, 53 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A. Groisman, V. Steinberg, Nature 410, 905 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    L. Pan, A. Morozov, C. Wagner, P. Arratia, Phys. Rev. Lett. 110, 174502 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Souliès, J. Aubril, C. Castelain, T. Burghelea, Phys. Fluids 29, 083102 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    P.C. Sousa, F.T. Pinho, M.A. Alves, Soft Matter 14, 1344 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    B. Traore, C. Castelain, T. Burghelea, J. Non-Newton. Fluid Mech. 223, 62 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, J. Non-Newton. Fluid Mech. 231, 68 (2016)CrossRefGoogle Scholar
  8. 8.
    R.J. Poole, B. Budhiraja, A.R. Cain, P.A. Scott, J. Non-Newton. Fluid Mech. 177, 15 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Mitchell, K. Lyons, A.M. Howe, A. Clarke, Soft Matter 12, 460 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    K.D. Squires, J.K. Eaton, Phys. Fluids A 3, 1169 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    F. Picano, G. Sardina, C.M. Casciola, Phys. Fluids 21, 093305 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    G. Sardina, P. Schlatter, L. Brandt, F. Picano, C.M. Casciola, J. Fluid Mech. 699, 50 (2012)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F. De Lillo, M. Cencini, S. Musacchio, G. Boffetta, Phys. Fluids 28, 035104 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    D. Mitra, N.E.L. Haugen, I. Rogachevskii, Eur. Phys. J. Plus 133, 35 (2018)CrossRefGoogle Scholar
  15. 15.
    J. Bec, Phys. Fluids 15, L81 (2003)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Calzavarini, M. Kerscher, D. Lohse, F. Toschi, J. Fluid Mech. 607, 13 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    F. De Lillo, G. Boffetta, S. Musacchio, Phys. Rev. E 85, 036308 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A. Nowbahar, G. Sardina, F. Picano, L. Brandt, J. Fluid Mech. 732, 706 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E. Afik, V. Steinberg, Nat. Commun. 8, 468 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Fluids (Wiley, New York, 1987)Google Scholar
  22. 22.
    S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, Phys. Rev. E 77, 055306(R) (2008)ADSCrossRefGoogle Scholar
  23. 23.
    S. Berti, G. Boffetta, Phys. Rev. E 82, 036314 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    E.L.C. VI, M. Plan, A. Gupta, D. Vincenzi, J.D. Gibbon, J. Fluid Mech. 822, R4 (2017)CrossRefGoogle Scholar
  25. 25.
    G. Boffetta, A. Celani, A. Mazzino, A. Puliafito, M. Vergassola, J. Fluid Mech. 523, 161 (2005)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    R. Sureshkumar, A.N. Beris, J. Non-Newton. Fluid Mech. 60, 53 (1995)CrossRefGoogle Scholar
  28. 28.
    T. Vaithianathan, L.R. Collins, J. Comput. Phys. 187, 1 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    A. Fouxon, V. Lebedev, Phys. Fluids 15, 2060 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    E. De Angelis, C.M. Casciola, R. Piva, Physica D 241, 297 (2012)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M.Q. Nguyen, A. Delache, S. Simoëns, W.J.T. Bos, M. El Hajem, Phys. Rev. Fluids 1, 083301 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Jun, V. Steinberg, Phys. Rev. Fluids 2, 103301 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    A. Gupta, R. Pandit, Phys. Rev. E 95, 033119 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    M.R. Maxey, J. Fluid Mech. 174, 441 (1987)ADSCrossRefGoogle Scholar
  35. 35.
    J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi, J. Fluid Mech. 550, 349 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    A. Okubo, Deep-Sea Res. 17, 445 (1970)Google Scholar
  37. 37.
    J. Weiss, Physica D 48, 273 (1991)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    K. Gustavvson, B. Mehlig, Adv. Phys. 65, 1 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    G. Falkovich, A. Fouxon, M.G. Stepanov, Nature 419, 151 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    J. Bec, J. Fluid Mech. 528, 255 (2005)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Caporaloni, F. Tampieri, F. Trombetti, O. Vittori, J. Atmos. Sci. 32, 565 (1975)ADSCrossRefGoogle Scholar
  43. 43.
    J.W. Brooke, K. Kontomaris, T. Hanratty, J.B. McLaughlin, Phys. Fluids A 4, 825 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    S. Belan, I. Fouxon, G. Falkovich, Phys. Rev. Lett. 112, 234502 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    A. Guha, J. Aerosol Sci. 28, 1517 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    J.O. Hinze, Turbulence: An Introduction to its Mechanism and Theory (McGraw-Hill, New York, 1959)Google Scholar
  47. 47.
    Y. Liu, V. Steinberg, EPL 90, 44002 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    A. Nowbahar, G. Sardina, F. Picano, L. Brandt, J. Fluid Mech. 732, 706 (2013)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Himani Garg
    • 1
  • Enrico Calzavarini
    • 1
  • Gilmar Mompean
    • 1
  • Stefano Berti
    • 1
  1. 1.Université de Lille, Unité de Mécanique de Lille, UML EA 7512LilleFrance

Personalised recommendations