Advertisement

Validation study of using the free volume approximation to confined thermotropic and lyotropic liquid-crystalline fluids

  • S. M. Ghazi
  • R. Aliabadi
Regular Article

Abstract.

We examined the accuracy of the free volume approximation (FVA) to calculate the isotropic-nematic (IN) transition properties of thermotropic and lyotropic rods between two parallel hard walls. This approximation has been proposed to ease the calculation of the confined systems. It approximates the free energy of the confined particles with a bulk free energy. It predicts a special point for these two types of liquid crystals where the first-order IN transition changes to the second one by decreasing either the temperature, the density or the pore width. This prediction is in contradiction (in spite of some qualitative agreement) with those of the other publications where the authors note that the discontinuous transition terminates at the critical point when the walls are completely impenetrable.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    F.C. Bawden, N.W. Pirie, J.D. Bernal, I. Fankuchen, Nature (London) 138, 1051 (1936)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)Google Scholar
  3. 3.
    S. Chandrasekhar, Liquid Crystals, 2nd edition (Cambridge University Press, 1993)Google Scholar
  4. 4.
    F.M. van der Kooij, K. Kassapidou, H.N. Lekkerkerker, Nature 406, 868 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Li, J.J.Y. Suen, E. Prince, E.M. Larin, A. Klinkova, H. Téhrien-Aubin, S. Zhu, B. Yang, A.S. Helmy, O.D. Lavrentovich, E. Kumacheva, Nat. Commun. 7, 12520 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S. Varga, A. Galindo, G. Jackson, J. Chem. Phys. 117, 10412 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Khadilkar, F.A. Escobedo, Soft Matter 12, 1506 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    W. Song, I.A. Kinloch, A.H. Windle, Science 302, 1363 (2003)CrossRefGoogle Scholar
  9. 9.
    I. Drevenšek-Olenik, in Liquid Crystals with Nano and Microparticles (World Scientific, 2017) pp. 537--569Google Scholar
  10. 10.
    H.P. Xin, F. Liu, G.J. Ren, H.L. Zhao, J.Q. Yao, Opt. Commun. 389, 92 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers (CRC Press, 2016)Google Scholar
  12. 12.
    I. Shiyanovskaya, K.D. Singer, R.J. Twieg, L. Sukhomlinova, V. Gettwert, Phys. Rev. E 65, 041715 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    B.R. Kaafarani, Chem. Mater. 23, 378 (2010)CrossRefGoogle Scholar
  14. 14.
    R.J. Carlton, J.T. Hunter, D.S. Miller, R. Abbasi, P.C. Mushenheim, L.N. Tan, N. Abbott, Liq. Cryst. Rev. 1, 29 (2013)CrossRefGoogle Scholar
  15. 15.
    J.C. Everts, M.T.J.J.M. Punter, S. Samin, P.P.A.M. van der Schoot, R. van Roij, J. Chem. Phys. 144, 194901 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    S.D. Peroukidis, A.G. Vanakaras, Soft Matter 9, 7419 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Kuijk, T. Troppenz, L. Filion, A. Imhof, R. Van Roij, M. Dijkstra, A. Van Blaaderen, Soft Matter 10, 6249 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    K.R. Purdy, S. Varga, A. Galindo, G. Jackson, S. Fraden, Phys. Rev. Lett. 94, 057801 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Bates, G.R. Luckhurst, J. Chem. Phys. 110, 7087 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    S. Dussi, M. Dijkstra, Nat. Commun. 7, 11175 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Santoro, A.R. Sampaio, H.L.F. da Luz, A.J. Palangana, Phys. Lett. A 353, 512 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    G.P. Souza, D.A. Oliveira, D.D. Luders, N.M. Kimura, M. Simões, A.J. Palangana, J. Mol. Liq. 156, 184 (2010)CrossRefGoogle Scholar
  24. 24.
    D.A. Oliveira, D.D. Luders, G.P. Souza, N.M. Kimura, A.J. Palangana, Cryst. Res. Technol. 44, 1255 (2009)CrossRefGoogle Scholar
  25. 25.
    R. van Roij, M. Dijkstra, R. Evans, J. Chem. Phys. 113, 7689 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    R. van Roij, M. Dijkstra, R. Evans, Europhys. Lett. 49, 350 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    R. Aliabadi, M. Moradi, S. Varga, Phys. Rev. E 92, 032503 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    M. Moradi, B.B. Ghotbabadi, R. Aliabadi, Int. J. Mod. Phys. C 28, 1750068 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    R. Aliabadi, P. Gurin, E. Velasco, S. Varga, Phys. Rev. E 97, 012703 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    J.H. Ahn, H.S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Science 314, 1754 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    D. de las Heras, Y. Martínez-Ratón, E. Velasco, Phys. Chem. Chem. Phys. 12, 10831 (2010)CrossRefGoogle Scholar
  32. 32.
    K. Okano, Japanese J. Appl. Phys. 22, L343 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    M. Ohgawara, T. Uchida, Japanese J. Appl. Phys. 20, L75 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    A. Poniewierski, Phys. Rev. E 47, 3396 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    R. Roth, R.H.H.G. van Roij, D. Andrienko, K.R. Mecke, S. Dietrich, Phys. Rev. Lett. 89, 088301 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Mao, M.E. Cates, H.N.W. Lekkerkerker, Physica A: Stat. Mech. Appl. 222, 10 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    A. Malijevsky, S. Varga, J. Phys.: Condens. Matter 22, 175002 (2010)ADSGoogle Scholar
  38. 38.
    P.I.C. Teixeira, T.J. Sluckin, J. Chem. Phys. 97, 1498 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    M. Moradi, R.J. Wheatley, A. Avazpour, Phys. Rev. E 72, 061706 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    D. de las Heras, E. Velasco, L. Mederos, Phys. Rev. E 74, 011709 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    P. Sheng, Phys. Rev. Lett. 37, 1059 (1976)ADSCrossRefGoogle Scholar
  42. 42.
    P. Sheng, Phys. Rev. A 26, 1610 (1982)ADSCrossRefGoogle Scholar
  43. 43.
    A. Poniewierski, R. Holyst, Phys. Rev. Lett. 61, 2461 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Pawlowska, G.F. Kventsel, T.J. Sluckin, Phys. Rev. A 36, 992 (1987)ADSCrossRefGoogle Scholar
  45. 45.
    A. Poniewierski, T.J. Sluckin, Liq. Cryst. 2, 281 (1987)CrossRefGoogle Scholar
  46. 46.
    M.M. Telo da Gama, P. Tarazona, M.P. Allen, R. Evans, Mol. Phys. 71, 801 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    A. Matsuyama, Phase Separations in Suspensions of Rods between Parallel Walls, https://doi.org/www.researchgate.net (unpublished)
  48. 48.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  49. 49.
    A. Matsuyama, J. Chem. Phys. 132, 214902 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    A. Matsuyama, T. Ueda, J. Chem. Phys. 136, 224904 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    S. Shri, Liquid Crystals: Fundamentals (World Scientific, 2002)Google Scholar
  52. 52.
    A. Matsuyama, T. Kato, Eur. Phys. J. E 6, 15 (2001)CrossRefGoogle Scholar
  53. 53.
    K. Kočevar, A. Borštnik, I. Muševič, S. Zumer, Phys. Rev. Lett. 86, 5914 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, College of ScienceFasa UniversityFasaIran

Personalised recommendations