Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow

Abstract.

Anisotropic particles are present in many natural and industrial flows. Here we perform direct numerical simulation (DNS) of turbulent pipe flows with dispersed finite-size prolate spheroids simulated by means of the lattice Boltzmann method (LBM). We consider three different particle shapes: spheroidal (aspect ratio 2 and 3) and spherical. These three simulations are complemented with a reference simulation of a single-phase flow. For the sake of comparison, all simulations, laden or unladen have the same energy input. The flow geometry used is a straight pipe with length eight times its radius where the fluid is randomly seeded with 256 finite-size particles. The volume fraction of particles in the flow has been kept fixed at 0.48% by varying the major and minor axis of each particle such that their volume remains the same. We studied the effect of different particle shapes on particle dynamics and orientation, as well as on the flow modulation. We show that the local accumulation of spheres close to the wall decreases for spheroids with increasing aspect ratio. These spheroidal particles rotate slower than spheres near to the wall and tend to stay with their major axes aligned to the flow streamwise direction. Despite the lower rotation rates, a higher intermittency in the rotational rates was observed for spheroids and this increase at increasing the aspect ratio. The drag reduction observed for particles with higher aspect ratio have also been investigated using the one-dimensional energy and dissipation spectra. These results point to the relevance of particle shapes on their dynamics and their influence on the turbulent flow.

Graphical abstract

References

  1. 1

    J.J. Stickel, R.L. Powell, Annu. Rev. Fluid Mech. 37, 129 (2005)

    ADS  Google Scholar 

  2. 2

    E. Molina, J.M. Fernandez-Sevilla, G. Acien Microalgae, mass culture methods, in Encyclopedia of Industrial Biotechnol.: Bioprocess, Bioseparation, and Cell Technology (John Wiley & Sons, 2010) pp. 1--24

  3. 3

    F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)

    ADS  Google Scholar 

  4. 4

    Mehdi Niazi Ardekani, Léa Al Asmar, Francesco Picano, Luca Brandt, Int. J. Heat Fluid Flow 71, 189 (2018)

    Google Scholar 

  5. 5

    S. Balachandar, J.K. Eaton, Annu. Rev. Fluid Mech. 42, 111 (2010)

    ADS  Google Scholar 

  6. 6

    F. Picano, G. Sardina, C.M. Casciola, Phys. Fluids 21, 093305 (2009)

    ADS  Google Scholar 

  7. 7

    H. Gao, H. Li, L.P. Wang, Comput. Math. Appl. 65, 194 (2013)

    MathSciNet  Google Scholar 

  8. 8

    F. Picano, W.P. Breugem, L. Brandt, J. Fluid Mech. 764, 463 (2015)

    ADS  MathSciNet  Google Scholar 

  9. 9

    A. TenCate, J.J. Derksen, L.M. Portela, H.E.A. Van Den Akker, J. Fluid Mech. 519, 233 (2004)

    ADS  Google Scholar 

  10. 10

    P. Costa, F. Picano, L. Brandt, W.P. Breugem, Phys. Rev. Lett. 117, 134501 (2016)

    ADS  Google Scholar 

  11. 11

    I. Lashgari, F. Picano, W.P. Breugem, L. Brandt, Phys. Rev. Lett. 113, 254505 (2014)

    ADS  Google Scholar 

  12. 12

    A. Gupta, H.J.H. Clercx, F. Toschi, Commun. Comput. Phys. 23, 665 (2018)

    MathSciNet  Google Scholar 

  13. 13

    A. Gupta, H.J.H. Clercx, F. Toschi, Eur. Phys. J. E 41, 34 (2018)

    Google Scholar 

  14. 14

    G.A. Voth, A. Soldati, Annu. Rev. Fluid Mech. 49, 249 (2017)

    ADS  Google Scholar 

  15. 15

    G.B. Jeffery, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 102, 161 (1922)

    ADS  Google Scholar 

  16. 16

    H. Brenner, Chem. Eng. Sci. 18, 1 (1963)

    Google Scholar 

  17. 17

    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Mechanics of Fluids and Transport Processes (Noordhoff International Publishing, 1973)

  18. 18

    M. Do-Quang, G. Amberg, G. Brethouwer, A.V. Johansson, Phys. Rev. E 89, 013006 (2014)

    ADS  Google Scholar 

  19. 19

    N.M. Ardekani, P. Costa, W.P. Breugem, F. Picano, L. Brandt, J. Fluid Mech. 816, 43 (2017)

    ADS  MathSciNet  Google Scholar 

  20. 20

    A. Eshghinejadfard, A. Abdelsamie, S.A. Hosseini, D. Thevenin, AIP Adv. 7, 095007 (2017)

    ADS  Google Scholar 

  21. 21

    J.P. Matas, J.F. Morris, E. Guazzelli, Phys. Rev. Lett. 90, 014501 (2003)

    ADS  Google Scholar 

  22. 22

    P. Patro, S.K. Dash, J. Fluids Eng. 136, 011301 (2013)

    Google Scholar 

  23. 23

    J.D. Kulick, J.R. Fessler, J.K. Eaton, J. Fluid Mech. 277, 109 (1994)

    ADS  Google Scholar 

  24. 24

    J.L. Lumley., Annu. Rev. Fluid Mech. 1, 367 (1969)

    ADS  Google Scholar 

  25. 25

    J.S. Paschkewitz, Y. Dubief, C.D. Dimitropoulos, E.S.G. Shaqfeh, P. Moin, J. Fluid Mech. 518, 281 (2004)

    ADS  Google Scholar 

  26. 26

    J.J.J. Gillissen, B.J. Boersma, P.H. Mortensen, H.I. Andersson, J. Fluid Mech. 602, 209 (2008)

    ADS  Google Scholar 

  27. 27

    P.K. Ptasinski, B.J. Boersma, F.T.M. Nieuwstadt, M.A. Hulsen, B.H.A.A. van Den Brule, J.C.R. Hunt, J. Fluid Mech. 490, 251 (2003)

    ADS  Google Scholar 

  28. 28

    Y. Dubief, C.M. White, V.E. Terrapon, E.S.G. Shaqfeh, P. Moin, S.K. Lele, J. Fluid Mech. 514, 271 (2004)

    ADS  Google Scholar 

  29. 29

    F.T.M. Nieuwstadt, J.M.J. den Toonder, Drag Reduction by Additives: A Review (Springer Vienna, 2001) pp. 269--316

  30. 30

    L.H. Zhao, H.I. Andersson, J.J.J. Gillissen, Phys. Fluids 22, 081702 (2010)

    ADS  Google Scholar 

  31. 31

    G. Bellani, M.L. Byron, A.G. Collignon, C.R. Meyer, E.A. Variano, J. Fluid Mech. 712, 41 (2012)

    ADS  MathSciNet  Google Scholar 

  32. 32

    S.L. Ceccio, Annu. Rev. Fluid Mech. 42, 183 (2010)

    ADS  Google Scholar 

  33. 33

    R.A. Verschoof, R.C.A. van der Veen, C. Sun, D. Lohse, Phys. Rev. Lett. 117, 104502 (2016)

    ADS  Google Scholar 

  34. 34

    J. Lin, W. Zhang, Z. Yu, J. Aerosol Sci. 35, 63 (2004)

    ADS  Google Scholar 

  35. 35

    S.S. Dearing, M. Campolo, A. Capone, A. Soldati, Exp. Fluids 54, 1419 (2012)

    Google Scholar 

  36. 36

    O. Bernstein, M. Shapiro, J. Aerosol Sci. 25, 113 (1994)

    ADS  Google Scholar 

  37. 37

    H. Zhang, G. Ahmadi, F.G. Fan, J.B. McLaughlin, Int. J. Multiphase Flow 27, 971 (2001)

    Google Scholar 

  38. 38

    P.H. Mortensen, H.I. Andersson, J.J.J. Gillissen, B.J. Boersma, Phys. Fluids 20, 093302 (2008)

    ADS  Google Scholar 

  39. 39

    C. Marchiolli, M. Fantoni, A. Soldati, Phys. Fluids 22, 033301 (2010)

    ADS  Google Scholar 

  40. 40

    N.R. Challabotla, L. Zhao, H.I. Andersson, J. Fluid Mech. 766, R2 (2015)

    ADS  Google Scholar 

  41. 41

    N.R. Challabotla, Z. Lihao, H.I. Andersson, Phys. Fluids 27, 061703 (2015)

    ADS  Google Scholar 

  42. 42

    L. Zhao, N.R. Challabotla, H.I. Andersson, E.A. Variano, Phys. Rev. Lett. 115, 244501 (2015)

    ADS  Google Scholar 

  43. 43

    J. Lin, X. Shi, Z. Yu, Int. J. Multiphase Flow 29, 1355 (2003)

    Google Scholar 

  44. 44

    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation, 1st edition (Oxford University Press, 2001)

  45. 45

    Z. Guo, C. Shu, Lattice Boltzmann Method and Its Applications in Engineering (World Scientific Publishing Company, 2013)

  46. 46

    Y. Chen, Q. Cai, Z. Xia, M. Wang, S. Chen, Phys. Rev. E 88, 013303 (2013)

    ADS  Google Scholar 

  47. 47

    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, New York, NY, USA, 1989)

  48. 48

    L. Anhua, P.H. Shih, SIAM J. Optim. 13, 298 (2002)

    MathSciNet  Google Scholar 

  49. 49

    F. Lucci, A. Ferrante, S. Elghobashi, J. Fluid Mech. 650, 5 (2010)

    ADS  Google Scholar 

  50. 50

    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  51. 51

    C. Alessandro, M. Massimo, P.R. Giovanni, Int. J. Multiphase Flow 94, 189 (2017) (Supplement C)

    Google Scholar 

  52. 52

    A. Eshghinejadfard, A. Abdelsamie, S.A. Hosseini, D. Thevenin, Int. J. Multiphase Flow 96, 161 (2017) (Supplement C)

    MathSciNet  Google Scholar 

  53. 53

    S. Parsa, E. Calzavarini, F. Toschi, G.A. Voth, Phys. Rev. Lett. 109, 134501 (2012)

    ADS  Google Scholar 

  54. 54

    B. Arcen, A. Taniare, B. Oesteria, Int. J. Multiphase Flow 32, 1326 (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Gupta.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Clercx, H.J.H. & Toschi, F. Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow. Eur. Phys. J. E 41, 116 (2018). https://doi.org/10.1140/epje/i2018-11724-6

Download citation

Keywords

  • Topical issue: Flowing Matter, Problems and Applications