Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow

  • 343 Accesses

  • 2 Citations

Abstract.

Anisotropic particles are present in many natural and industrial flows. Here we perform direct numerical simulation (DNS) of turbulent pipe flows with dispersed finite-size prolate spheroids simulated by means of the lattice Boltzmann method (LBM). We consider three different particle shapes: spheroidal (aspect ratio 2 and 3) and spherical. These three simulations are complemented with a reference simulation of a single-phase flow. For the sake of comparison, all simulations, laden or unladen have the same energy input. The flow geometry used is a straight pipe with length eight times its radius where the fluid is randomly seeded with 256 finite-size particles. The volume fraction of particles in the flow has been kept fixed at 0.48% by varying the major and minor axis of each particle such that their volume remains the same. We studied the effect of different particle shapes on particle dynamics and orientation, as well as on the flow modulation. We show that the local accumulation of spheres close to the wall decreases for spheroids with increasing aspect ratio. These spheroidal particles rotate slower than spheres near to the wall and tend to stay with their major axes aligned to the flow streamwise direction. Despite the lower rotation rates, a higher intermittency in the rotational rates was observed for spheroids and this increase at increasing the aspect ratio. The drag reduction observed for particles with higher aspect ratio have also been investigated using the one-dimensional energy and dissipation spectra. These results point to the relevance of particle shapes on their dynamics and their influence on the turbulent flow.

Graphical abstract

References

  1. 1

    J.J. Stickel, R.L. Powell, Annu. Rev. Fluid Mech. 37, 129 (2005)

  2. 2

    E. Molina, J.M. Fernandez-Sevilla, G. Acien Microalgae, mass culture methods, in Encyclopedia of Industrial Biotechnol.: Bioprocess, Bioseparation, and Cell Technology (John Wiley & Sons, 2010) pp. 1--24

  3. 3

    F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)

  4. 4

    Mehdi Niazi Ardekani, Léa Al Asmar, Francesco Picano, Luca Brandt, Int. J. Heat Fluid Flow 71, 189 (2018)

  5. 5

    S. Balachandar, J.K. Eaton, Annu. Rev. Fluid Mech. 42, 111 (2010)

  6. 6

    F. Picano, G. Sardina, C.M. Casciola, Phys. Fluids 21, 093305 (2009)

  7. 7

    H. Gao, H. Li, L.P. Wang, Comput. Math. Appl. 65, 194 (2013)

  8. 8

    F. Picano, W.P. Breugem, L. Brandt, J. Fluid Mech. 764, 463 (2015)

  9. 9

    A. TenCate, J.J. Derksen, L.M. Portela, H.E.A. Van Den Akker, J. Fluid Mech. 519, 233 (2004)

  10. 10

    P. Costa, F. Picano, L. Brandt, W.P. Breugem, Phys. Rev. Lett. 117, 134501 (2016)

  11. 11

    I. Lashgari, F. Picano, W.P. Breugem, L. Brandt, Phys. Rev. Lett. 113, 254505 (2014)

  12. 12

    A. Gupta, H.J.H. Clercx, F. Toschi, Commun. Comput. Phys. 23, 665 (2018)

  13. 13

    A. Gupta, H.J.H. Clercx, F. Toschi, Eur. Phys. J. E 41, 34 (2018)

  14. 14

    G.A. Voth, A. Soldati, Annu. Rev. Fluid Mech. 49, 249 (2017)

  15. 15

    G.B. Jeffery, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 102, 161 (1922)

  16. 16

    H. Brenner, Chem. Eng. Sci. 18, 1 (1963)

  17. 17

    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Mechanics of Fluids and Transport Processes (Noordhoff International Publishing, 1973)

  18. 18

    M. Do-Quang, G. Amberg, G. Brethouwer, A.V. Johansson, Phys. Rev. E 89, 013006 (2014)

  19. 19

    N.M. Ardekani, P. Costa, W.P. Breugem, F. Picano, L. Brandt, J. Fluid Mech. 816, 43 (2017)

  20. 20

    A. Eshghinejadfard, A. Abdelsamie, S.A. Hosseini, D. Thevenin, AIP Adv. 7, 095007 (2017)

  21. 21

    J.P. Matas, J.F. Morris, E. Guazzelli, Phys. Rev. Lett. 90, 014501 (2003)

  22. 22

    P. Patro, S.K. Dash, J. Fluids Eng. 136, 011301 (2013)

  23. 23

    J.D. Kulick, J.R. Fessler, J.K. Eaton, J. Fluid Mech. 277, 109 (1994)

  24. 24

    J.L. Lumley., Annu. Rev. Fluid Mech. 1, 367 (1969)

  25. 25

    J.S. Paschkewitz, Y. Dubief, C.D. Dimitropoulos, E.S.G. Shaqfeh, P. Moin, J. Fluid Mech. 518, 281 (2004)

  26. 26

    J.J.J. Gillissen, B.J. Boersma, P.H. Mortensen, H.I. Andersson, J. Fluid Mech. 602, 209 (2008)

  27. 27

    P.K. Ptasinski, B.J. Boersma, F.T.M. Nieuwstadt, M.A. Hulsen, B.H.A.A. van Den Brule, J.C.R. Hunt, J. Fluid Mech. 490, 251 (2003)

  28. 28

    Y. Dubief, C.M. White, V.E. Terrapon, E.S.G. Shaqfeh, P. Moin, S.K. Lele, J. Fluid Mech. 514, 271 (2004)

  29. 29

    F.T.M. Nieuwstadt, J.M.J. den Toonder, Drag Reduction by Additives: A Review (Springer Vienna, 2001) pp. 269--316

  30. 30

    L.H. Zhao, H.I. Andersson, J.J.J. Gillissen, Phys. Fluids 22, 081702 (2010)

  31. 31

    G. Bellani, M.L. Byron, A.G. Collignon, C.R. Meyer, E.A. Variano, J. Fluid Mech. 712, 41 (2012)

  32. 32

    S.L. Ceccio, Annu. Rev. Fluid Mech. 42, 183 (2010)

  33. 33

    R.A. Verschoof, R.C.A. van der Veen, C. Sun, D. Lohse, Phys. Rev. Lett. 117, 104502 (2016)

  34. 34

    J. Lin, W. Zhang, Z. Yu, J. Aerosol Sci. 35, 63 (2004)

  35. 35

    S.S. Dearing, M. Campolo, A. Capone, A. Soldati, Exp. Fluids 54, 1419 (2012)

  36. 36

    O. Bernstein, M. Shapiro, J. Aerosol Sci. 25, 113 (1994)

  37. 37

    H. Zhang, G. Ahmadi, F.G. Fan, J.B. McLaughlin, Int. J. Multiphase Flow 27, 971 (2001)

  38. 38

    P.H. Mortensen, H.I. Andersson, J.J.J. Gillissen, B.J. Boersma, Phys. Fluids 20, 093302 (2008)

  39. 39

    C. Marchiolli, M. Fantoni, A. Soldati, Phys. Fluids 22, 033301 (2010)

  40. 40

    N.R. Challabotla, L. Zhao, H.I. Andersson, J. Fluid Mech. 766, R2 (2015)

  41. 41

    N.R. Challabotla, Z. Lihao, H.I. Andersson, Phys. Fluids 27, 061703 (2015)

  42. 42

    L. Zhao, N.R. Challabotla, H.I. Andersson, E.A. Variano, Phys. Rev. Lett. 115, 244501 (2015)

  43. 43

    J. Lin, X. Shi, Z. Yu, Int. J. Multiphase Flow 29, 1355 (2003)

  44. 44

    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation, 1st edition (Oxford University Press, 2001)

  45. 45

    Z. Guo, C. Shu, Lattice Boltzmann Method and Its Applications in Engineering (World Scientific Publishing Company, 2013)

  46. 46

    Y. Chen, Q. Cai, Z. Xia, M. Wang, S. Chen, Phys. Rev. E 88, 013303 (2013)

  47. 47

    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, New York, NY, USA, 1989)

  48. 48

    L. Anhua, P.H. Shih, SIAM J. Optim. 13, 298 (2002)

  49. 49

    F. Lucci, A. Ferrante, S. Elghobashi, J. Fluid Mech. 650, 5 (2010)

  50. 50

    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  51. 51

    C. Alessandro, M. Massimo, P.R. Giovanni, Int. J. Multiphase Flow 94, 189 (2017) (Supplement C)

  52. 52

    A. Eshghinejadfard, A. Abdelsamie, S.A. Hosseini, D. Thevenin, Int. J. Multiphase Flow 96, 161 (2017) (Supplement C)

  53. 53

    S. Parsa, E. Calzavarini, F. Toschi, G.A. Voth, Phys. Rev. Lett. 109, 134501 (2012)

  54. 54

    B. Arcen, A. Taniare, B. Oesteria, Int. J. Multiphase Flow 32, 1326 (2006)

Download references

Author information

Correspondence to A. Gupta.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Clercx, H.J.H. & Toschi, F. Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow. Eur. Phys. J. E 41, 116 (2018). https://doi.org/10.1140/epje/i2018-11724-6

Download citation

Keywords

  • Topical issue: Flowing Matter, Problems and Applications