Advertisement

Strong deformations of DNA: Effect on the persistence length

  • Kyryło A. SimonovEmail author
Open Access
Regular Article

Abstract.

Extreme deformations of the DNA double helix attracted a lot of attention during the past decades. Particularly, the determination of the persistence length of DNA with extreme local disruptions, or kinks, has become a crucial problem in the studies of many important biological processes. In this paper we review an approach to calculate the persistence length of the double helix by taking into account the formation of kinks of arbitrary configuration. The reviewed approach improves the Kratky-Porod model to determine the type and nature of kinks that occur in the double helix, by measuring a reduction of the persistence length of the kinkable DNA.

Graphical abstract

Keywords

Living systems: Biological Matter 

Notes

Acknowledgments

Open Access funding provided by University of Vienna.

References

  1. 1.
    C. Prévost, M. Takahashi, R. Lavery, ChemPhysChem 10, 1399 (2009)CrossRefGoogle Scholar
  2. 2.
    W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984) pp. 324--326Google Scholar
  3. 3.
    C.-Y. Chen et al., Nucl. Acids Res. 33, 430 (2005)CrossRefGoogle Scholar
  4. 4.
    T.J. Richmond, C.A. Davey, Nature 423, 145 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    F.H.C. Crick, A. Klug, Nature 255, 530 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    R.E. Dickerson, Nucl. Acids Res. 26, 1906 (1998)CrossRefGoogle Scholar
  7. 7.
    M.H. Werner, A.M. Gronenborn, G.M. Clore, Science 271, 778 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    M. Suzuki, N. Yagi, Nucl. Acids Res. 23, 2083 (1995)CrossRefGoogle Scholar
  9. 9.
    T.E. Cloutier, J. Widom, Mol. Cell 14, 355 (2004)CrossRefGoogle Scholar
  10. 10.
    J. Yan, J.F. Marko, Phys. Rev. Lett. 93, 108108 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Du et al., Proc. Natl. Acad. Sci. U.S.A. 102, 5397 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    F. Lankaš, R. Lavery, J.H. Maddocks, Structure 14, 1527 (2006)CrossRefGoogle Scholar
  13. 13.
    Q. Du, A. Kotlyar, A. Vologodskii, Nucl. Acids Res. 36, 1120 (2008)CrossRefGoogle Scholar
  14. 14.
    J.S. Mitchell, C.A. Laughton, S.A. Harris, Nucl. Acids Res. 39, 3928 (2011)CrossRefGoogle Scholar
  15. 15.
    A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994) pp. 3--8Google Scholar
  16. 16.
    O. Kratky, G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949)CrossRefGoogle Scholar
  17. 17.
    A. Vologodskii, M.D. Frank-Kamenetskii, Nucl. Acids Res. 41, 6785 (2013)CrossRefGoogle Scholar
  18. 18.
    C.R. Cantor, P.R. Schimmel, Biophysical Chemistry, Part III: The Behavior of Biological Macromolecules (W. H. Freeman, San Francisco, 1980) pp. 1019--1039Google Scholar
  19. 19.
    P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience Publishers, New York, 1969) pp. 401--403Google Scholar
  20. 20.
    C. Bustamante, Z. Bryant, S.B. Smith, Nature 421, 423 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    P.J. Hagerman, Ann. Rev. Biophys. Biophys. Chem. 17, 265 (1988)CrossRefGoogle Scholar
  22. 22.
    Yu.O. Popov, A.V. Tkachenko, Phys. Rev. E 71, 051905 (2005)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    I.M. Kulić et al., Phys. Rev. E 72, 041905 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    P.A. Wiggins, R. Phillips, P.C. Nelson, Phys. Rev. E 71, 021909 (2005)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Simonov, S.N. Volkov, Persistence Length of DNA Macromolecule with Kinks, arXiv:1410.5233 (2014)Google Scholar
  26. 26.
    I. Rouzina, V.A. Bloomfield, Biophys. J. 74, 3152 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    L.J. Maher III, Structure 14, 1479 (2006)CrossRefGoogle Scholar
  28. 28.
    S.A. Harris, C.A. Laughton, T.B. Liverpool, Nucl. Acids Res. 36, 21 (2008)CrossRefGoogle Scholar
  29. 29.
    J. Curuksu et al., Nucl. Acids Res. 37, 3766 (2009)CrossRefGoogle Scholar
  30. 30.
    E. Protozanova, P. Yakovchuk, M.D. Frank-Kamenetskii, J. Mol. Biol. 342, 775 (2004)CrossRefGoogle Scholar
  31. 31.
    P. Yakovchuk, E. Protozanova, M.D. Frank-Kamenetskii, Nucl. Acids Res. 34, 564 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Reymer, B. Nordén, Chem. Commun. 48, 4941 (2012)CrossRefGoogle Scholar
  33. 33.
    J.P. Hall et al., Proc. Natl. Acad. Sci. U.S.A. 108, 17610 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S.N. Volkov, Molek. Biol. (Moscow) 29, 1086 (1995)Google Scholar
  35. 35.
    E.S. Kryachko, S.N. Volkov, Int. J. Quantum Chem. 82, 193 (2001)CrossRefGoogle Scholar
  36. 36.
    E.N. Nikolova et al., Nature 470, 498 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    S.N. Volkov, J. Biol. Phys. 31, 323 (2005)CrossRefGoogle Scholar
  38. 38.
    X.-J. Lu, Z. Shakked, W.K. Olson, J. Mol. Biol. 300, 819 (2000)CrossRefGoogle Scholar
  39. 39.
    W.K. Olson, V.B. Zhurkin, Curr. Opin. Struct. Biol. 10, 286 (2000)CrossRefGoogle Scholar
  40. 40.
    A. Klug, Nature 365, 486 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    P.P. Kanevska, S.N. Volkov, Ukr. J. Phys. 51, 1003 (2006)Google Scholar
  42. 42.
    C.J. Murphy, Adv. Photochem. 26, 145 (2001)Google Scholar
  43. 43.
    W. Han et al., Nature 386, 563 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    W. Han et al., Proc. Natl. Acad. Sci. U.S.A. 94, 10565 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    J.L. Kim, D.B. Nikolov, S.K. Burley, Nature 365, 520 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    D.B. Nikolov et al., Proc. Natl. Acad. Sci. U.S.A. 93, 4862 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    S.N. Volkov, private communicationGoogle Scholar
  48. 48.
    J.A. Krumhansl, J.R. Schrieffer, Phys. Rev. B 11, 3535 (1975)ADSCrossRefGoogle Scholar
  49. 49.
    C. G. Baumann et al., Proc. Natl. Acad. Sci. U.S.A. 94, 6185 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    I. Rouzina, V.A. Bloomfield, Biophys. Chem. 64, 139 (1997)CrossRefGoogle Scholar
  51. 51.
    D. Porschke, J. Biomol. Struct. Dyn. 4, 373 (1986)CrossRefGoogle Scholar
  52. 52.
    C.S. Baumann, V. Bloomfield, unpublishedGoogle Scholar
  53. 53.
    S. Geggier, A. Vologodskii, Proc. Natl. Acad. Sci. U.S.A. 107, 15421 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität WienViennaAustria

Personalised recommendations