Advertisement

Memory formation in cyclically deformed amorphous solids and sphere assemblies

  • Monoj Adhikari
  • Srikanth Sastry
Regular Article
  • 15 Downloads

Abstract.

We study a model amorphous solid that is subjected to repeated athermal cyclic shear deformation. It has previously been demonstrated that the memory of the amplitudes of shear deformation the system is subjected to (or trained at) is encoded, and can be retrieved by subsequent deformation cycles that serve as read operations. Here we consider different read protocols and measurements and show that single and multiple memories can be robustly retrieved through these different protocols. We also show that shear deformation by a larger amplitude always erases the stored memories. These observations are similar to those in experiments with non-Brownian colloidal suspensions and corresponding models, but differ in the possibility of storing multiple memories non-transiently. Such a possibility has been associated with the presence of cycles of transitions that take place in the model amorphous solids, between local energy minima. Here, we also study low-density sphere assemblies which serve as models for non-Brownian colloidal suspensions, under athermal deformation, and identify a regime where the signatures of memory encoding are similar to the model glass, even when transition between local energy minima are absent. We show that such a regime corresponds to the presence of loop reversibility, rather than point reversibility of configurations under cyclic deformation.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect, Vol. 2 (Oxford University Press, 2003)Google Scholar
  2. 2.
    A.J. Kovacs, Transition vitreuse dans les polymères amorphes. Etude phénoménologique, in Fortschritte Der Hochpolymeren-Forschung (Springer Berlin Heidelberg, Berlin, Heidelberg, 1964) pp. 394--507, ISBN 978-3-540-37073-4Google Scholar
  3. 3.
    S. Mossa, F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    E.M. Bertin, J.P. Bouchaud, J.M. Drouffe, C. Godrche, J. Phys. A: Math. Gen. 36, 10701 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    E. Bouchbinder, J.S. Langer, Soft Matter 6, 3065 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    K. Jonason, E. Vincent, J. Hammann, J. Bouchaud, P. Nordblad, Phys. Rev. Lett. 81, 3243 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, J.D. Shore, Phys. Rev. Lett. 70, 3347 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Pierce, C.R. Buechler, L.B. Sorensen, J.J. Turner, S.D. Kevan, E.A. Jagla, J.M. Deutsch, T. Mai, O. Narayan, J.E. Davies et al., Phys. Rev. Lett. 94, 017202 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Pierce, R.G. Moore, L.B. Sorensen, S.D. Kevan, O. Hellwig, E.E. Fullerton, J.B. Kortright, Phys. Rev. Lett. 90, 175502 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Pierce, C.R. Buechler, L.B. Sorensen, S.D. Kevan, E.A. Jagla, J.M. Deutsch, T. Mai, O. Narayan, J.E. Davies, K. Liu et al., Phys. Rev. B 75, 144406 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Deutsch, A. Dhar, O. Narayan, Phys. Rev. Lett. 92, 227203 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Middleton, Phys. Rev. Lett. 68, 670 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    S.N. Coppersmith, P.B. Littlewood, Phys. Rev. B 36, 311 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    C. Tang, K. Wiesenfeld, P. Bak, S. Coppersmith, P. Littlewood, Phys. Rev. Lett. 58, 1161 (1987)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    P.B. Littlewood, Jpn. J. Appl. Phys. 26, 1901 (1987)CrossRefGoogle Scholar
  16. 16.
    M.L. Povinelli, S.N. Coppersmith, L.P. Kadanoff, S.R. Nagel, S.C. Venkataramani, Phys. Rev. E 59, 4970 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    D.C. Kaspar, M. Mungan, Exact results for a toy model exhibiting dynamic criticality, in Annales Henri Poincaré, Vol. 16 (Springer, 2015) pp. 2837--2879Google Scholar
  18. 18.
    M. Işeri, D. Kaspar, M. Mungan, EPL 115, 46003 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mungan, M.M. Terzi, arXiv:1802.03096 (2018)Google Scholar
  20. 20.
    Y. Lahini, O. Gottesman, A. Amir, S.M. Rubinstein, Phys. Rev. Lett. 118, 085501 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    J.C. Burton, S.R. Nagel, Phys. Rev. E 93, 032905 (2016)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    N.C. Keim, S.R. Nagel, Phys. Rev. Lett. 107, 010603 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    N.C. Keim, J.D. Paulsen, S.R. Nagel, Phys. Rev. E 88, 032306 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Paulsen, N.C. Keim, S.R. Nagel, Phys. Rev. Lett. 113, 068301 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. E 88, 020301 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. Lett. 112, 025702 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    D. Fiocco, G. Foffi, S. Sastry, J. Phys.: Condens. Matter 27, 194130 (2015)ADSGoogle Scholar
  28. 28.
    C. Josserand, A.V. Tkachenko, D.M. Mueth, H.M. Jaeger, Phys. Rev. Lett. 85, 3632 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    M. Bandi, H.G.E. Hentschel, I. Procaccia, S. Roy, J. Zylberg, arXiv preprint arXiv:1711.09382 (2017)Google Scholar
  30. 30.
    J.R. Royer, P.M. Chaikin, Proc. Natl. Acad. Sci. U.S.A. 112, 49 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D.J. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. Lett. 55, 1530 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    A. Murugan, Z. Zeravcic, M.P. Brenner, S. Leibler, Proc. Natl. Acad. Sci. U.S.A. 112, 54 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    W. Zhong, D.J. Schwab, A. Murugan, J. Stat. Phys. 167, 806 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.W. Rocks, N. Pashine, I. Bischofberger, C.P. Goodrich, A.J. Liu, S.R. Nagel, Proc. Natl. Acad. Sci. U.S.A. 114, 2520 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Yan, R. Ravasio, C. Brito, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 114, 2526 (2017)CrossRefGoogle Scholar
  37. 37.
    T. Tlusty, A. Libchaber, J.P. Eckmann, arXiv:1608.03145 (2016)Google Scholar
  38. 38.
    D. Pine, J.P. Gollub, J. Brady, A. Leshansky, Nature 438, 997 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    L. Corte, P. Chaikin, J.P. Gollub, D. Pine, Nat. Phys. 4, 420 (2008)CrossRefGoogle Scholar
  40. 40.
    P. Leishangthem, A.D. Parmar, S. Sastry, Nat. Commun. 8, 14653 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    I. Regev, T. Lookman, C. Reichhardt, Phys. Rev. E 88, 1 (2013) arXiv:1301.7479Google Scholar
  42. 42.
    N.V. Priezjev, Phys. Rev. E 87, 1 (2013) arXiv:1301.1666v1CrossRefGoogle Scholar
  43. 43.
    T. Kawasaki, L. Berthier, Phys. Rev. E 94, 1 (2016) arXiv:1507.04120CrossRefGoogle Scholar
  44. 44.
    C.F. Schreck, R.S. Hoy, M.D. Shattuck, C.S. O’Hern, Phys. Rev. E 88, 052205 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    W. Kob, H.C. Andersen, Phys. Rev. E 52, 4134 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    C.S. O’Hern, S.A. Langer, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 88, 075507 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    A.W. Lees, S.F. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972)ADSCrossRefGoogle Scholar
  50. 50.
    S. Mukherji, N. Kandula, A.K. Sood, R. Ganapathy, preprint (2018)Google Scholar
  51. 51.
    A.D.S. Parmar, S. Kumar, S. Sastry, preprint (2018)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretical Sciences UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia

Personalised recommendations