Advertisement

Creeping motion of a solid particle inside a spherical elastic cavity

  • Abdallah Daddi-Moussa-Ider
  • Hartmut Löwen
  • Stephan Gekle
Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

On the basis of the linear hydrodynamic equations, we present an analytical theory for the low-Reynolds-number motion of a solid particle moving inside a larger spherical elastic cavity which can be seen as a model system for a fluid vesicle. In the particular situation where the particle is concentric with the cavity, we use the stream function technique to find exact analytical solutions of the fluid motion equations on both sides of the elastic cavity. In this particular situation, we find that the solution of the hydrodynamic equations is solely determined by membrane shear properties and that bending does not play a role. For an arbitrary position of the solid particle within the spherical cavity, we employ the image solution technique to compute the axisymmetric flow field induced by a point force (Stokeslet). We then obtain analytical expressions of the leading-order mobility function describing the fluid-mediated hydrodynamic interactions between the particle and the confining elastic cavity. In the quasi-steady limit of vanishing frequency, we find that the particle self-mobility function is higher than that predicted inside a rigid no-slip cavity. Considering the cavity motion, we find that the pair-mobility function is determined only by membrane shear properties. Our analytical predictions are supplemented and validated by fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied forcing frequencies.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (John Wiley & Sons, New York, 2007)Google Scholar
  2. 2.
    R.B. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 80, 839 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    D. Chowdhury, A. Schadschneider, K. Nishinari, Phys. Life Rev. 2, 318 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J. Panyam, V. Labhasetwar, Adv. Drug Deliv. Rev. 55, 329 (2003)CrossRefGoogle Scholar
  5. 5.
    L.M. Bareford, P.W. Swaan, Adv. Drug Deliv. Rev. 59, 748 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Bereiter-Hahn, M. Vöth, Microsc. Res. Tech. 27, 198 (1994)CrossRefGoogle Scholar
  7. 7.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)ADSGoogle Scholar
  8. 8.
    W. Wang, S. Li, L. Mair, S. Ahmed, T. Jun, Angew. Chem. Int. Ed. 53, 3201 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Liebchen, M.E. Cates, D. Marenduzzo, Soft Matter 12, 7259 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Menzel, Phys. Rep. 554, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Rühle, J. Blaschke, J.-T. Kuhr, H. Stark, New J. Phys. 20, 025003 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Courier Corporation, Mineola, 2013)Google Scholar
  14. 14.
    L.G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    I.F. Sbalzarini, P. Koumoutsakos, J. Struct. Biol. 151, 182 (2005)CrossRefGoogle Scholar
  16. 16.
    N. Gal, D. Lechtman-Goldstein, D. Weihs, Rheol. Acta 52, 425 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Li, J. Schnekenburger, M.H.G. Duits, J. Biomed. Opt. 14, 064005 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D. Ott, P.M. Bendix, L.B. Oddershede, ACS Nano 7, 8333 (2013)CrossRefGoogle Scholar
  19. 19.
    É. Fodor, M. Guo, N.S. Gov, P. Visco, D.A. Weitz, F. van Wijland, EPL 110, 48005 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    T.J. Lampo, S. Stylianidou, M.P. Backlund, P.A. Wiggins, A.J. Spakowitz, Biophys. J. 112, 532 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S. Yamada, D. Wirtz, S.C. Kuo, Biophys. J. 78, 1736 (2000)CrossRefGoogle Scholar
  22. 22.
    D.T. Chen, E.R. Weeks, J.C. Crocker, M.F. Islam, R. Verma, J. Gruber, A.J. Levine, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 90, 108301 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A. El Kaffas, D. Bekah, M. Rui, J.C. Kumaradas, M.C. Kolios, Phys. Med. Biol. 58, 923 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Vol. 1 (Springer Science & Business Media, The Netherlands, 2012)Google Scholar
  25. 25.
    C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik (Leipzig Akademische verlagsgesellschaft m.b.h., Leipzig, Germany, 1928)Google Scholar
  26. 26.
    S.F.J. Butler, A note on Stokes's stream function for motion with a spherical boundary, in Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 49 (Cambridge University Press, 1953) pp. 169--174Google Scholar
  27. 27.
    W.D. Collins, Mathematika 1, 125 (1954)MathSciNetCrossRefGoogle Scholar
  28. 28.
    W.D. Collins, Mathematika 5, 118 (1958)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Hasimoto, J. Phys. Soc. Jpn. 11, 793 (1956)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Hasimoto, J. Phys. Soc. Jpn. 61, 3027 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    H. Hasimoto, Phys. Fluids 9, 1838 (1997)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Shail, Q. J. Mech. App. Math. 40, 223 (1987)CrossRefGoogle Scholar
  33. 33.
    R. Shail, S.H. Onslow, Mathematika 35, 233 (1988)MathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Sellier, Comput. Model. Eng. Sci. 25, 165 (2008)Google Scholar
  35. 35.
    C. Maul, S. Kim, Phys. Fluids 6, 2221 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    C. Maul, S. Kim, Image of a point force in a spherical container and its connection to the Lorentz reflection formula, in The Centenary of a Paper on Slow Viscous Flow by the Physicist HA Lorentz (Springer, 1996) pp. 119--130Google Scholar
  37. 37.
    C. Pozrikidis, J. Comput. Phys. 169, 250 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Y.O. Fuentes, S. Kim, D.J. Jeffrey, Phys. Fluids 31, 2445 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    Y.O. Fuentes, S. Kim, D.J. Jeffrey, Phys. Fluids 1, 61 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    B.U. Felderhof, A. Sellier, J. Chem. Phys. 136, 054703 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    C. Aponte-Rivera, R.N. Zia, Phys. Rev. Fluids 1, 023301 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    C. Aponte-Rivera, Y. Su, R.N. Zia, J. Fluid Mech. 836, 413 (2018)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    D. Tsemakh, O.M. Lavrenteva, A. Nir, Int. J. Multiphase Flow 30, 1337 (2004)CrossRefGoogle Scholar
  44. 44.
    S.Y. Reigh, L. Zhu, F. Gallaire, E. Lauga, Soft Matter 13, 3161 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    V.A. Shaik, V. Vasani, A.M. Ardekani, J. Fluid Mech. 851, 187 (2018)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Y. Zhan, J. Wang, N. Bao, C. Lu, Anal. Chim. 81, 2027 (2009)CrossRefGoogle Scholar
  47. 47.
    L. Zhu, F. Gallaire, Phys. Rev. Lett. 119, 064502 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Phys. Fluids 28, 071903 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    A. Daddi-Moussa-Ider, S. Gekle, J. Chem. Phys. 145, 014905 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    B. Rallabandi, B. Saintyves, T. Jules, T. Salez, C. Schönecker, L. Mahadevan, H.A. Stone, Phys. Rev. Fluids 2, 074102 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    A. Daddi-Moussa-Ider, S. Gekle, Eur. Phys. J. E 41, 19 (2018)CrossRefGoogle Scholar
  52. 52.
    A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, A.M. Menzel, H. Löwen, J. Chem. Phys. 149, 014901 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    R. Skalak, A. Tozeren, R.P. Zarda, S. Chien, Biophys. J. 13, 245 (1973)ADSCrossRefGoogle Scholar
  54. 54.
    T.W. Secomb, Annu. Rev. Fluid Mech. 49, 443 (2017)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    W. Helfrich, Z. Naturfocsch. C 28, 693 (1973)CrossRefGoogle Scholar
  56. 56.
    S. Timoshenko, S. Woinowsky-Krieger, S. Woinowsky-Krieger, Theory of Plates and Shells, Vol. 2 (McGraw-hill New York, 1959)Google Scholar
  57. 57.
    H. Zhou, C. Pozrikidis, J. Fluid Mech. 283, 175 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, 1996)Google Scholar
  59. 59.
    T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)MathSciNetCrossRefGoogle Scholar
  60. 60.
    T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear (Springer Science & Business Media, 2012)Google Scholar
  61. 61.
    D. Barthès-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    S. Gekle, Biophys. J. 110, 514 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    A. Guckenberger, A. Kihm, T. John, C. Wagner, S. Gekle, Soft Matter 14, 2032 (2018)ADSCrossRefGoogle Scholar
  64. 64.
    T. Bickel, Eur. Phys. J. E 20, 379 (2006)CrossRefGoogle Scholar
  65. 65.
    A. Guckenberger, M.P. Schraml, P.G. Chen, M. Leonetti, S. Gekle, Comput. Phys. Comm. 207, 1 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    C. Pozrikidis, J. Fluid Mech. 440, 269 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    A. Guckenberger, S. Gekle, J. Phys.: Condens. Matt. 29, 203001 (2017)ADSGoogle Scholar
  68. 68.
    A. Daddi-Moussa-Ider, S. Gekle, Phys. Rev. E 95, 013108 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    A. Daddi-Moussa-Ider, Diffusion of nanoparticles nearby elastic cell membranes: A theoretical study, PhD Thesis, University of Bayreuth, Germany (2017)Google Scholar
  70. 70.
    S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. 1 (Interscience Publishers, New York, 1963)Google Scholar
  71. 71.
    M. Deserno, Chem. Phys. Lipids 185, 11 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Stimson, G.B. Jeffery, Proc. R. Soc. London, Ser. A 111, 110 (1926)ADSCrossRefGoogle Scholar
  73. 73.
    A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Phys. Rev. E 93, 012612 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    B.U. Felderhof, J. Chem. Phys. 125, 124904 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Phys. Rev. E 95, 053117 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    V.A. Shaik, A.M. Ardekani, Phys. Rev. Fluids 2, 113606 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    H. Lamb, Hydrodynamics (Cambridge University Press, 1932)Google Scholar
  78. 78.
    R.G. Cox, J. Fluid Mech. 37, 601 (1969)ADSCrossRefGoogle Scholar
  79. 79.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Vol. 1 (New York, Dover, 1972)Google Scholar
  80. 80.
    C. Misbah, Phys. Rev. Lett. 96, 028104 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    Jonathan B. Freund, Annu. Rev. Fluid Mech. 46, 67 (2014)ADSCrossRefGoogle Scholar
  82. 82.
    L. Zhu, Simulation of individual cells in flow, PhD Thesis, KTH Royal Institute of Technology (2014)Google Scholar
  83. 83.
    H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. U.S.A. 102, 14159 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    B. Kaoui, T. Krüger, J. Harting, Soft Matter 8, 9246 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    B. Kaoui, J. Harting, Rheol. Acta 55, 465 (2016)CrossRefGoogle Scholar
  86. 86.
    A. Nait-Ouhra, A. Farutin, O. Aouane, H. Ez-Zahraouy, A. Benyoussef, C. Misbah, Phys. Rev. E 97, 012404 (2018)ADSCrossRefGoogle Scholar
  87. 87.
    H.A. Lorentz, Abh. Theor. Phys. 1, 23 (1907)Google Scholar
  88. 88.
    S.H. Lee, R.S. Chadwick, L.G. Leal, J. Fluid Mech. 93, 705 (1979)ADSCrossRefGoogle Scholar
  89. 89.
    S.H. Lee, L.G. Leal, J. Fluid Mech. 98, 193 (1980)ADSCrossRefGoogle Scholar
  90. 90.
    T. Bickel, Phys. Rev. E 75, 041403 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abdallah Daddi-Moussa-Ider
    • 1
  • Hartmut Löwen
    • 1
  • Stephan Gekle
    • 2
  1. 1.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Biofluid Simulation and Modeling, Theoretische Physik VIUniversität BayreuthBayreuthGermany

Personalised recommendations