Advertisement

Diffuse double-layer structure in mixed electrolytes considering ions as dielectric spheres

  • J. J. López-García
  • J. Horno
  • C. Grosse
Regular Article
  • 20 Downloads

Abstract.

The structure of the diffuse part of the electric double layer at solid-electrolyte solution interfaces is examined using a theoretical model that takes into account the finite ion size by modeling the solution as a suspension of polarizable insulating spheres in water. This formalism is applied to mixed electrolyte solutions using the “Boublik-Mansoori-Carnahan-Starling-Leland” (BMCSL) theory for the steric interactions among ions. It is shown that the ionic size differences have a strong bearing on the diffuse part of the electric double-layer structure of these systems. Moreover, for strong potential values, the different size-related effects become important even for binary electrolyte solutions due to the presence of H+ and OH- ions that are substantially smaller than hydrated ions originated from salt dissociation. The obtained results display some of the qualitative features observed in experiments on aqueous systems that are generally interpreted in terms of totally different mechanisms.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    D. Andelman, Electrostatic Properties of Membranes: The Poisson-Boltzmann Theory, chapt. 12 in Handbook of Biological Physics, Vol. 1, edited by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995)Google Scholar
  2. 2.
    J. Lyklema, Fundamentals of Colloid and Interface Science. Solid/liquid Interfaces, Vol. II (Academic Press, London, 1995)Google Scholar
  3. 3.
    K. Bohinc, G. Volpe-Bossa, S. May, Adv. Colloid Interface Sci. 249, 220 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Zhou, Z. Wang, Bo Li, Phys. Rev. E 84, 021901 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A.H. Boschitsch, P.V. Danilov, J. Computat. Chem. 33, 1152 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Popovic, A. Siber, Phys. Rev. E 88, 022302 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M.M. Hatlo, R. Van Roij, L. Lue, EPL 97, 28010 (2012)CrossRefGoogle Scholar
  8. 8.
    J.J. López-García, C. Grosse, J. Horno, J. Colloid Interface Sci. 405, 336 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    E. Gongadze, A. Velikonja, S. Perutkova, P. Kramar, A. Macek-Lebar, V. Kralj-Iglic, A. Iglic, Electrochim. Acta 126, 42 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Sin, S. Im, K. Kim, Electrochim. Acta 153, 531 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Nakayama, D. Andelman, J. Chem. Phys. 142, 044706 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Y.A. Budkov, A.L. Kolesnikov, M.G. Kiselev, EPL 111, 28002 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J.J. López-García, J. Horno, C. Grosse, J. Colloid Interface Sci. 458, 273 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    G. Minton, L. Lue, Mol. Phys. 114, 2477 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    J.J. López-García, J. Horno, C. Grosse, J. Colloid Interface Sci. 496, 531 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M.V. Fedorov, A.A. Kornyshev, Chem. Rev. 114, 2978 (2014)CrossRefGoogle Scholar
  17. 17.
    J.J. Bikerman, Philos. Mag. 33, 384 (1942)CrossRefGoogle Scholar
  18. 18.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)ADSCrossRefGoogle Scholar
  19. 19.
    T. Boublik, J. Chem. Phys. 53, 471 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland, J. Chem. Phys. 54, 1523 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    L. Lue, N. Zoeller, D. Blankschtein, Langmuir 15, 3726 (1999)CrossRefGoogle Scholar
  22. 22.
    P.M. Biesheuvel, M. Soestbergen, J. Colloid Interface Sci. 316, 490 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    B.B. Damaskin, O.A. Petrii, J. Solid State Electrochem. 15, 1317 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Valette, A. Hamelin, J. Electroanal. Chem. 45, 301 (1973)CrossRefGoogle Scholar
  25. 25.
    G. Valette, J. Electroanal. Chem. 122, 285 (1981)CrossRefGoogle Scholar
  26. 26.
    M. Ammam, D. di Caprio, L. Gaillon, Electrochim. Acta 61, 207 (2012)CrossRefGoogle Scholar
  27. 27.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1 (Clarendon, Oxford, 1892)Google Scholar
  28. 28.
    C. Grosse, V.N. Shilov, J. Colloid Interface Sci. 309, 283 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M. Born, Z. Phys. 1, 45 (1920)ADSCrossRefGoogle Scholar
  30. 30.
    H.A. Pohl, J. Appl. Phys. 29, 1182 (1958)ADSCrossRefGoogle Scholar
  31. 31.
    F.W. Wiegel, P. Strating, A.E. Garcia, Mod. Phys. Lett. B 7, 483 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    J. Barker-Jarvis, B. Riddle, A.M. Young, IEEE Trans. Dielectr. Electr. Insul. 6, 226 (1999)CrossRefGoogle Scholar
  33. 33.
    I. Borukhov, D. Andelman, H. Orland, Electrochim. Acta 46, 221 (2000)CrossRefGoogle Scholar
  34. 34.
    J.J. López-García, C. Grosse, J. Horno, Langmuir 27, 13970 (2011)CrossRefGoogle Scholar
  35. 35.
    J.J. López-García, J. Horno, C. Grosse, J. Colloid Interface Sci. 380, 213 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    E.R. Nightingale, J. Phys. Chem. 63, 1381 (1959)CrossRefGoogle Scholar
  37. 37.
    S. Gavryushov, J. Phys. Chem. B 112, 8955 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de JaénJaénSpain
  2. 2.Departamento de FísicaUniversidad Nacional de TucumánSan Miguel de TucumánArgentina

Personalised recommendations