Advertisement

Drying colloidal systems: Laboratory models for a wide range of applications

  • Patrice Bacchin
  • David Brutin
  • Anne Davaille
  • Erika Di Giuseppe
  • Xiao Dong Chen
  • Ioannis Gergianakis
  • Frédérique Giorgiutti-Dauphiné
  • Lucas Goehring
  • Yannick Hallez
  • Rodolphe Heyd
  • Romain Jeantet
  • Cécile Le Floch-Fouéré
  • Martine Meireles
  • Eric Mittelstaedt
  • Céline Nicloux
  • Ludovic PauchardEmail author
  • Marie-Louise Saboungi
Colloquium

Abstract.

The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    Ioannis Gergianakis, Mise en oeuvre de nano-réservoirs anti-corrosion dans des procédés de traitement de surface, PhD Thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2016Google Scholar
  2. 2.
    Fré, J. Appl. Phys. 120, 065107 (2016)CrossRefGoogle Scholar
  3. 3.
    B.V. Derjaguin, L. Landau, Acta Physicochim. URSS 14, 633 (1941)Google Scholar
  4. 4.
    E. Di Giuseppe, A. Davaille, E. Mittelstaedt, M. Franç, Rheol. Acta 51, 451 (2012)CrossRefGoogle Scholar
  5. 5.
    David W. Richerson, Douglas W. Freitag, Technical Report, Oak Ridge National LaboratoryGoogle Scholar
  6. 6.
  7. 7.
    Joaquim Li, Bernard Cabane, Michael Sztucki, Jé, Langmuir 28, 200 (2011)Google Scholar
  8. 8.
    G.K. Batchelor, J. Fluid Mech. 41, 545 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    Prabhu R. Nott, Elisabeth Guazzelli, Olivier Pouliquen, Phys. Fluids 23, 043304 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Jeffrey F. Morris, Fabienne Boulay, J. Rheol. 43, 1213 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Martin Frank, Douglas Anderson, Eric R. Weeks, Jeffrey F. Morris, J. Fluid Mech. 493, 363 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Denis Semwogerere, Jeffrey F. Morris, Eric R. Weeks, J. Fluid Mech. 581, 437 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Yannick Hallez, Ioannis Gergianakis, Martine Meireles, Patrice Bacchin, J. Rheol. 60, 1317 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Aurore Merlin, Jean-Baptiste Salmon, Jacques Leng, Soft Matter 8, 3526 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    B. Cuq, E. Rondet, J. Abecassis, Powder Technol. 208, 244 (2011) (Special Issue: Papers presented to the Symposium STPMF 2009, Science and Technology of Powders and Sintered MaterialsCrossRefGoogle Scholar
  16. 16.
    J. Burgain, C. Gaiani, C. Cailliez-Grimal, C. Jeandel, J. Scher, Innov. Food Sci. Emerg. Technol. 19, 233 (2013)CrossRefGoogle Scholar
  17. 17.
    D.E. Walton, C.J. Mumford, Chem. Eng. Res. Des. 77, 21 (1999)CrossRefGoogle Scholar
  18. 18.
    Jose Miguel Aguilera, J. Food Eng. 67, 3 (2005) (IV Iberoamerican Congress of Food Engineering (CIBIA IV)CrossRefGoogle Scholar
  19. 19.
    G.V. Barbosa-Cánovas, P. Juliano, Compression and Compaction Characteristics of Selected Food Powders, in Advances in Food and Nutrition Research, Vols. 233--307 (Academic Press, 2005)Google Scholar
  20. 20.
    Albert H.L. Chow, Henry H.Y. Tong, Pratibhash Chattopadhyay, Boris Y. Shekunov, Pharm. Res. 24, 411 (2007)CrossRefGoogle Scholar
  21. 21.
    B. Adhikari, T. Howes, B.R. Bhandari, V. Truong, Int. J. Food Prop. 3, 323 (2000)CrossRefGoogle Scholar
  22. 22.
    Nan Fu, Meng Wai Woo, Xiao Dong Chen, Dry. Technol. 30, 1771 (2012)CrossRefGoogle Scholar
  23. 23.
    Xuelian Chen, Volodymyr Boyko, Jens Rieger, Frank Reinhold, Bernd Reck, Jan Perlich, Rainer Gehrke, Yongfeng Men, Soft Matter 8, 12093 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    L. Pauchard, Y. Couder, Europhys. Lett. 66, 667 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Kyle Anthony Baldwin, Manon Granjard, David I. Willmer, Khellil Sefiane, David John Fairhurst, Soft Matter 7, 7819 (2011)CrossRefGoogle Scholar
  26. 26.
    Cé, Langmuir 29, 15606 (2013)CrossRefGoogle Scholar
  27. 27.
    Celine Sadek, Pierre Schuck, Yannick Fallourd, Nicolas Pradeau, Cecile Le Floch-Fouere, Romain Jeantet, Dairy Sci. Technol. 95, 771 (2015)CrossRefGoogle Scholar
  28. 28.
    Celine Sadek, Pierre Schuck, Yannick Fallourd, Nicolas Pradeau, Romain Jeantet, Cecile Le Floch-Fouere, Food Hydrocolloids 52, 161 (2016)CrossRefGoogle Scholar
  29. 29.
    Jacob Bouman, Paul Venema, Renko J. de Vries, Erik van der Linden, Maarten A.I. Schutyser, Food Res. Int. 84, 128 (2016)CrossRefGoogle Scholar
  30. 30.
    Nan Fu, Meng Wai Woo, Xiao Dong Chen, Colloids Surf. B: Biointerfaces 87, 255 (2011)CrossRefGoogle Scholar
  31. 31.
    Cé, Dry. Technol. 32, 1540 (2014)CrossRefGoogle Scholar
  32. 32.
    Sean Xu QI Lin, Xiao Dong Chen, Chem. Eng. Res. Des. 80, 401 (2017)CrossRefGoogle Scholar
  33. 33.
    Nan Fu, Meng Wai Woo, Sean Xu Qi Lin, Zihao Zhou, Xiao Dong Chen, Chem. Eng. Sci. 66, 1738 (2011)CrossRefGoogle Scholar
  34. 34.
    Xiao Dong Chen, Dry. Technol. 26, 627 (2008)CrossRefGoogle Scholar
  35. 35.
    X.D. Chen, A. Putranto, Modeling Drying Processes - A Reaction Engineering Approach, 1st edition (Cambridge University Press, 2013) ISBN 978-1-107-01210-3Google Scholar
  36. 36.
    Aditya Putranto, Xiao Dong Chen, Int. J. Food Prop. 19, 1726 (2016)CrossRefGoogle Scholar
  37. 37.
    Xiao Dong Chen, Sean Xu Qi Lin, AIChE J. 51, 1790 (2005)CrossRefGoogle Scholar
  38. 38.
    Sean Xu Qi Lin, Xiao Dong Chen, Dry. Technol. 24, 1329 (2006)CrossRefGoogle Scholar
  39. 39.
    Sean Xu Qi Lin, Xiao Dong Chen, Chem. Eng. Process. 46, 437 (2007) Advances in the Application of Chemical Engineering Principles in Food IndustryCrossRefGoogle Scholar
  40. 40.
    Sean Xu Qi Lin, Xiao Dong Chen, Dry. Technol. 27, 1028 (2009)CrossRefGoogle Scholar
  41. 41.
    Kamlesh Patel, Xiao Dong Chen, Romain Jeantet, Pierre Schuck, Dairy Sci. Technol. 90, 181 (2010)CrossRefGoogle Scholar
  42. 42.
    Peng Zhu, Kamlesh Patel, Sean Lin, Serge Mé, Dry. Technol. 29, 419 (2011)CrossRefGoogle Scholar
  43. 43.
    Yan Jin, Xiao Dong Chen, Dry. Technol. 27, 371 (2009)CrossRefGoogle Scholar
  44. 44.
    Yan Jin, Xiao Dong Chen, Dry. Technol. 27, 1018 (2009)CrossRefGoogle Scholar
  45. 45.
    Yan Jin, Xiao Dong Chen, Dry. Technol. 28, 960 (2010)CrossRefGoogle Scholar
  46. 46.
    Yan Jin, Xiao Dong Chen, Int. J. Therm. Sci. 50, 615 (2011)CrossRefGoogle Scholar
  47. 47.
    Alexander F. Routh, William B. Zimmerman, Chem. Eng. Sci. 59, 2961 (2004)CrossRefGoogle Scholar
  48. 48.
    Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greb Huber, Sidney R. Nagel, Thomas A. Witten, Nature 389, 827 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    Mohan Srinivasarao, David Collings, Alan Philips, Sanjay Patel, Science 292, 79 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Hideto Matsuyama, Stephane Berghmans, Douglas R. Lloyd, Polymer 40, 2289 (1999)CrossRefGoogle Scholar
  52. 52.
    Hideto Matsuyama, Masaaki Teramoto, Ryo Nakatani, Taisuke Maki, J. Appl. Polym. Sci. 74, 159 (1999)CrossRefGoogle Scholar
  53. 53.
    Masato Yamamura, Takatoshi Nishio, Toshihisa Kajiwara, Kitaro Adachi, Chem. Eng. Sci. 57, 2901 (2002)CrossRefGoogle Scholar
  54. 54.
    C.S. Tsay, A.J. McHugh, J. Membr. Sci. 64, 81 (1991)CrossRefGoogle Scholar
  55. 55.
    J. Fichot, R. Heyd, C. Josserand, I. Chourpa, E. Gombart, J.-F. Tranchant, M.-L. Saboungi, Phys. Rev. E 86, 6 (2012)CrossRefGoogle Scholar
  56. 56.
    G. Lelong, R. Heyd, G. Charalambopoulou, T. Steriotis, A. Brandt, K. Beck, M. Vayer, D. Price, M.-L. Saboungi, J. Phys. Chem. C 116, 9481 (2012)CrossRefGoogle Scholar
  57. 57.
    R. Heyd, A. Rampino, B. Bellich, E. Elisei, A. Cesaro, M.-L. Saboungi, J. Chem. Phys. 140, 124701 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    F. Doumenc, B. Guerrier, C. Allain, Europhys. Lett. 76, 630 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Bé, AIChE J. 44, 791 (1998)CrossRefGoogle Scholar
  60. 60.
    Zhiyon Gu, Paschalis Alexandridis, J. Pharm. Sci. 93, 1454 (2004)CrossRefGoogle Scholar
  61. 61.
    Christina Ratti (Editor), Advances in Food Dehydration, Contemporary Food Engineering Series (CRC Press, 2009)Google Scholar
  62. 62.
    M. Thiriet, Biology and Mechanics of Blood Flows, Part II: Mechanics and Medical Aspects (Springer, 2008)Google Scholar
  63. 63.
    W. Bou Zeid, D. Brutin, Colloids Surf. A 430, 1 (2013)CrossRefGoogle Scholar
  64. 64.
    L. Pauchard, Europhys. Lett. 74, 188 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    F. Smith, C. Nicloux, D. Brutin, Phys. Rev. Fluids 3, 013601 (2018)ADSCrossRefGoogle Scholar
  66. 66.
    F. Smith, N. Buntsma, D. Brutin, Langmuir 34, 1143 (2018)CrossRefGoogle Scholar
  67. 67.
    K. Range, F. Feuillebois, J. Colloid Interface Sci. 203, 16 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    T. Stotesbury, M.C. Taylor, M.C. Jermy, J. Forensic Sci. 62, 74 (2017)CrossRefGoogle Scholar
  69. 69.
    N. Laan, F. Smith, C. Nicloux, D. Brutin, Forensic Sci. Int. 267, 104 (2016)CrossRefGoogle Scholar
  70. 70.
    J.P. Riddel, B.E. Aouizerat, C. Miaskowski, D.P. Lillicrap, J. Pediatr. Oncol. Nurs. 23, 123 (2007)CrossRefGoogle Scholar
  71. 71.
    D. Brutin, B. Sobac, B. Loquet, J. Sampol, J. Fluid Mech. 667, 85 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    J. Salvant Plisson, L. de Viguerie, L. Tahroucht, M. Menu, G. Ducouret, Colloids Surf. A: Physicochem. Eng. Asp. 458, 134 (2014)CrossRefGoogle Scholar
  73. 73.
    L. Pauchard, C. Allain, C. R. Phys. 4, 231 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    H. Valot, J. Roire, J. Petit, Encyclopedie De La Peinture, Vol. 1 (EREC, 1999)Google Scholar
  75. 75.
    A.L.R. Sibrant, L. Pauchard, EPL 116, 49002 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    C. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990)Google Scholar
  77. 77.
    Johanna Salvant, Etienne Barthel, Michel Menu, Appl. Phys. A 104, 509 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    Marguerite Leang, Frederique Giorgiutti-Dauphine, Lay-Theng Lee, Ludovic Pauchard, Soft Matter 13, 5802 (2017)ADSCrossRefGoogle Scholar
  79. 79.
    S. Bohn, L. Pauchard, Y. Couder, Phys. Rev. E 71, 046214 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    Lucas Goehring, William J. Clegg, Alexander F. Routh, Phys. Rev. Lett. 110, 024301 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    J.L. Beuth Jr., Int. J. Solids Struct. 29, 1657 (1992)CrossRefGoogle Scholar
  82. 82.
    Lucas Goehring, Philos. Trans. R. Soc. A 371, 20120353 (2013)CrossRefGoogle Scholar
  83. 83.
    Lucas Goehring, Rebecca Conroy, Asad Akhter, William J. Clegg, Alexander F. Routh, Soft Matter 6, 3562 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    Gerhard Müller, J. Geophys. Res. 103, 15239 (1998)CrossRefADSGoogle Scholar
  85. 85.
    A. Toramaru, T. Matsumoto, J. Geophys. Res. 109, B02205 (2004)ADSCrossRefGoogle Scholar
  86. 86.
    Lucas Goehring, Stephen W. Morris, Europhys. Lett. 69, 739 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    Lucas Goehring, L. Mahadevan, Stephen W. Morris, Proc. Natl. Acad. Sci. U.S.A. 106, 387 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    Maurice A. Biot, J. Appl. Phys. 27, 240 (1956)ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    A. Norris, J. Appl. Phys. 71, 1138 (1992)ADSCrossRefGoogle Scholar
  90. 90.
    Herbert F. Wang, Theory of Linear Poroelasticity (Princeton University Press, Oxford, 2000)Google Scholar
  91. 91.
    Lucas Goehring, Akio Nakahara, Tapati Dutta, So Kitsunezaki, Sujata Tarafdar, Desiccation cracks and their patterns: Formation and Modelling in Science and Nature (Wiley-VCH, Singapore, 2015)Google Scholar
  92. 92.
    Maurice A. Biot, J. Appl. Phys. 12, 155 (1941)ADSCrossRefGoogle Scholar
  93. 93.
    Stephen S.L. Peppin, J.A. Elliott, M. Grae Worster, Phys. Fluids 17, 053301 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    K. Terzaghi, The shearing resistance of saturated soils, in Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Vol. 1 (Graduate School of Engineering, Harvard University, Cambridge, MA, 1936) p. 54Google Scholar
  95. 95.
    George W. Scherer, J. Non-Cryst. Solids 109, 171 (1989)ADSCrossRefGoogle Scholar
  96. 96.
    George W. Scherer, J. Am. Ceram. Soc. 73, 3 (1990)CrossRefGoogle Scholar
  97. 97.
    George W. Scherer, J. Non-Cryst. Solids 144, 210 (1992)ADSCrossRefGoogle Scholar
  98. 98.
    James R. Rice, Michael P. Cleary, Rev. Geophys. Space Sci. 14, 227 (1976)ADSCrossRefGoogle Scholar
  99. 99.
    Alexander F. Routh, Rep. Prog. Phys. 76, 046603 (2013)ADSCrossRefGoogle Scholar
  100. 100.
    D. Brutin (Editor), Droplet Wetting and Evaporation: From Pure to Complex Fluids (Academic Press, 2015)Google Scholar
  101. 101.
    Lucas Goehring, Phys. Today 67, 39 (2014) issue No. 11CrossRefGoogle Scholar
  102. 102.
    L. Pauchard, M. Adda-Bedia, C. Allain, Y. Couder, Phys. Rev. E 67, 027103 (2003)ADSCrossRefGoogle Scholar
  103. 103.
    M.C. Milinkovitch, L. Manukyan, A. Debry, N. Di-Po\"i, S. Martin, D. Singh, D. Lambert, M. Zwicker, Science 339, 78 (2013)ADSCrossRefGoogle Scholar
  104. 104.
    Richard Bulkeley, Philos. Trans. R. Soc. Lond. 17, 708 (1693)CrossRefGoogle Scholar
  105. 105.
    Sam Foley, T. Molyneux, Philos. Trans. R. Soc. Lond. 18, 170 (1694)CrossRefGoogle Scholar
  106. 106.
    Thomas Molyneux, Philos. Trans. R. Soc. Lond. 20, 209 (1698)CrossRefGoogle Scholar
  107. 107.
    Robert Mallet, Philos. Mag. 50, 122 (1875)CrossRefGoogle Scholar
  108. 108.
    T.H. Huxley, Physiography: An Introduction to the Study of Nature (MacMillan and Co., London, 1881)Google Scholar
  109. 109.
    J.W. French, Trans. Geol. Soc. Glasgow 17, 50 (1925)CrossRefGoogle Scholar
  110. 110.
    S.I. Tomkeieff, Bull. Volcanol. 6, 89 (1940)ADSCrossRefGoogle Scholar
  111. 111.
    Gerhard Müller, J. Volcanol. Geotherm. Res. 86, 93 (1998)CrossRefADSGoogle Scholar
  112. 112.
    Gerhard Müller, J. Struct. Geol. 23, 45 (2001)CrossRefADSGoogle Scholar
  113. 113.
    Yuri Akiba, Jun Magome, Hiroshi Kobayashi, Hiroyuki Shima, Phys. Rev. E 96, 023003 (2017)CrossRefGoogle Scholar
  114. 114.
    Tsuyoshi Mizuguchi, Akihiro Nishimoto, So Kitsunezaki, Yoshihiro Yamazaki, Ichio Aoki, Phys. Rev. E 71, 056122 (2005)ADSCrossRefGoogle Scholar
  115. 115.
    Lucas Goehring, Zhenquan Lin, Stephen W. Morris, Phys. Rev. E 74, 036115 (2006)ADSCrossRefGoogle Scholar
  116. 116.
    Lucas Goehring, Phys. Rev. E 80, 036116 (2009)CrossRefGoogle Scholar
  117. 117.
    H.-A. Bahr, M. Hofmann, H.J. Weiss, U. Bahr, G. Fischer, H. Balke, Phys. Rev. E 79, 056103 (2009)ADSCrossRefGoogle Scholar
  118. 118.
    H.-A. Crostack, J. Nellesen, G. Fisher, M. Hofmann, H.-G. Rademacher, W. Tillmann, Exp. Mech. 52, 917 (2012)CrossRefGoogle Scholar
  119. 119.
    Martin Hofmann, Robert Anderssohn, Hans-Achim Bahr, Hans-Jürgen Weiß, Jens Nellesen, Phys. Rev. Lett. 115, 154301 (2015)ADSCrossRefGoogle Scholar
  120. 120.
    Dallas L. Peck, Takeshi Minakami, Geol. Soc. Am. Bull. 79, 1151 (1968)ADSCrossRefGoogle Scholar
  121. 121.
    Harry C. Hardee, J. Volcanol. Geotherm. Res. 7, 211 (1980)ADSCrossRefGoogle Scholar
  122. 122.
    James M. DeGraff, Atilla Aydin, J. Geophys. Res. 98, 6411 (1993)ADSCrossRefGoogle Scholar
  123. 123.
    Paul Budkewitsch, Pierre-Yves Robin, J. Volcanol. Geotherm. Res. 59, 219 (1994)ADSCrossRefGoogle Scholar
  124. 124.
    L. Goehring, S.W. Morris, J. Geophys. Res. 113, B10203 (2008)ADSCrossRefGoogle Scholar
  125. 125.
    Philip E. Long, Bernard J. Wood, Geol. Soc. Am. Bull. 97, 1144 (1986)ADSCrossRefGoogle Scholar
  126. 126.
    Michael P. Ryan, Charles G. Sammis, Geol. Soc. Am. Bull. 89, 1295 (1978)ADSCrossRefGoogle Scholar
  127. 127.
    S. Bohn, J. Platkiewicz, B. Andreotti, M. Adda-Bedia, Y. Couder, Phys. Rev. E 71, 046215 (2005)ADSCrossRefGoogle Scholar
  128. 128.
    Akihiho Nishimoto, Tsuyoshi Mizuguchi, So Kitsunezaki, Phys. Rev. E 76, 016102 (2007)ADSCrossRefGoogle Scholar
  129. 129.
    J.W. Hutchinson, Z. Suo, Adv. Appl. Mech. 29, 63 (1992)CrossRefGoogle Scholar
  130. 130.
    T. Bai, D.D. Pollard, H. Gao, Nature 403, 753 (2000)ADSCrossRefGoogle Scholar
  131. 131.
    Taixu Bai, David D. Pollard, J. Struct. Geol. 22, 43 (2000)ADSCrossRefGoogle Scholar
  132. 132.
    Martin Hofmann, Hans-Achim Bahr, Hans-Jürgen Weiss, Ute Bahr, Herbert Balke, Phys. Rev. E 83, 036104 (2011)ADSCrossRefGoogle Scholar
  133. 133.
    Denis Weaire, Stefan Hutzler, The Physics of Foams (Oxford University Press, 1999)Google Scholar
  134. 134.
    Atilla Aydin, James M. DeGraff, Science 239, 471 (1988)ADSCrossRefGoogle Scholar
  135. 135.
    J.P. O’Reilly, Trans. R. Irish Acad. 26, 641 (1879)Google Scholar
  136. 136.
    E.A. Jagla, Phys. Rev. Lett. 69, 056212 (2004)ADSGoogle Scholar
  137. 137.
    E.M. Jones, Apollo 15 Lunar Surface Journal (Hadley Rille, 1996) https://doi.org/www.hq.nasa.gov/office/pao/History/alsj/a15/a15.rille.html
  138. 138.
    M.P. Milazzo, L.P. Keszthelyi, W.L. Jaeger, M. Rosiek, S. Mattson, C. Verba, R.A. Beyer, P.E. Geissler, A.S. McEwen, Geology 37, 171 (2009)ADSCrossRefGoogle Scholar
  139. 139.
    Fredric M. Menger, Hong Zhang, Kevin L. Caran, Victor A. Seredyuk, Robert P. Apkarian, J. Am. Chem. Soc. 124, 1140 (2002)CrossRefGoogle Scholar
  140. 140.
    K.V. Seshadri, J. Geol. Soc. India 49, 452 (1997)Google Scholar
  141. 141.
    Amalie Christensen, Christophe Raufaste, Marek Misztal, Franck Celestini, Maria Guidi, Clive Ellegaard, Joachim Mathiesen, J. Geophys. Res.: Solid Earth 121, 1462 (2016)ADSCrossRefGoogle Scholar
  142. 142.
    A. Yuse, M. Sano, Nature 362, 329 (1993)ADSCrossRefGoogle Scholar
  143. 143.
    A. Yuse, M. Sano, Physica D 108, 365 (1997)ADSCrossRefGoogle Scholar
  144. 144.
    Kelly A. Shorlin, John R. de Bruyn, Malcolm Graham, Stephen W. Morris, Phys. Rev. E 61, 6950 (2000)ADSCrossRefGoogle Scholar
  145. 145.
    D. Mal, S. Sinha, T. Dutta, S. Mitra, S. Tarafdar, J. Phys. Soc. Jpn. 76, 014801 (2007)ADSCrossRefGoogle Scholar
  146. 146.
    D. Mal, S. Sinha, S. Mitra, S. Tarafdar, Physica A 346, 110 (2005)ADSCrossRefGoogle Scholar
  147. 147.
    R.S. Sletten, B. Hallet, R.C. Fletcher, J. Geophys. Res. 108, 8044 (2003)CrossRefGoogle Scholar
  148. 148.
    A.H. Lachenbruch, Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost, GSA Special Papers, Vol. 70 (The Geological Society of America, 1962)Google Scholar
  149. 149.
    J. Ross Mackay, Can. J. Earth Sci. 11, 1366 (1974)CrossRefGoogle Scholar
  150. 150.
    Thomas E. Berg, Robert F. Black, Preliminary measurements of growth of nonsorted polygons, Victoria Land, Antarctica, in Antarctic Soils and Soil Forming Processes, edited by J.C.F. Tedrow (American Geophysical Union, 1966) pp. 61--108Google Scholar
  151. 151.
    J. Ross Mackay, C.R. Burn, Can. J. Earth Sci. 39, 95 (2002)CrossRefGoogle Scholar
  152. 152.
    Yang Lu, Sihong Liu, Liping Weng, Liujiang Wang, Zhuo Li, Lei Xu, Eng. Geol. 208, 93 (2016)CrossRefGoogle Scholar
  153. 153.
    Gregory V. Chavdarian, Dawn Y. Sumner, Sedimentology 58, 407 (2010)ADSCrossRefGoogle Scholar
  154. 154.
    Ankush Kumar, Rajashekhar Pujar, Nikita Gupta, Sujata Tarafdar, Giridhar U. Kulkarni, Appl. Phys. Lett. 111, 013502 (2017)ADSCrossRefGoogle Scholar
  155. 155.
    Koo Hyun Nam, Il H. Park, Seung Hwan Ko, Nature 485, 221 (2012)ADSCrossRefGoogle Scholar
  156. 156.
    Byoung Choul Kim, Toshiki Matsuoka, Christopher Moraes, Jiexi Huang, M.D. Thouless, Shuichi Takayama, Sci. Rep. 3, 221 (2013)Google Scholar
  157. 157.
    Minseok Kim, Dong-Joo Kim, Dogyeong Ha, Taesung Kim, Nanoscale 8, 9461 (2016)CrossRefGoogle Scholar
  158. 158.
    Andy Goldsworthy, Time (Harry N. Abrams, London, 2008)Google Scholar
  159. 159.
    Thomas R. Watters, Sean C. Solomon, Christian Klimczak, Andrew M. Freed, James W. Head, Carolyn M. Ernst, David M. Blair, Timothy A. Goudge, Paul K. Byrne, Geology 40, 1123 (2012)ADSCrossRefGoogle Scholar
  160. 160.
    Andrew M. Freed, David M. Blair, Thomas R. Watters, Christian Klimczak, Paul K. Byrne, Sean C. Solomon, Maria T. Zuber, H.J. Melosh, J. Geophys. Res.: Planets 117, E00L06 (2012)Google Scholar
  161. 161.
    Pawan Nandakishore, Lucas Goehring, Soft Matter 12, 2253 (2016)CrossRefGoogle Scholar
  162. 162.
    Gerald Schubert, Donald L. Turcotte, Peter Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, 2001)Google Scholar
  163. 163.
    Subrahmanyan Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (New York, Dover, 1961)Google Scholar
  164. 164.
    Anne Davaille, Angela Limare, Laboratory studies of mantle convection, in Treatise of Geophysics, Vol. 7: Mantle Dynamics, second edition (Elsevier, 2015)Google Scholar
  165. 165.
    A. Davaille, S.E. Smrekar, S. Tomlinson, Nat. Geosci. 10, 349 (2017)ADSCrossRefGoogle Scholar
  166. 166.
    David Bercovici, Paul Tackley, Yanick Ricard, The generation of plate tectonics from mantle dynamics, in Treatise of Geophysics, Vol. 7: Mantle Dynamics, second edition (Elsevier, 2015)Google Scholar
  167. 167.
    Tohru Okuzono, Kin’ya Ozawa, Masao Doi, Phys. Rev. Lett. 97, 136103 (2006)ADSCrossRefGoogle Scholar
  168. 168.
    R.W. Style, S.S.L. Peppin, Proc. R. Soc. London, Ser. A 467, 174 (2011)ADSCrossRefGoogle Scholar
  169. 169.
    Arthur A. Evans, Elliott Cheung, Kendra D. Nyberg, Amy C. Rowat, Soft Matter 13, 1056 (2017)ADSCrossRefGoogle Scholar
  170. 170.
    N. Tsapis, E.R. Dufresne, S.S. Sinha, C.S. Riera, J.W. Hutchinson, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 94, 018302 (2005)ADSCrossRefGoogle Scholar
  171. 171.
    Erika Di Giuseppe, Anne Davaille, Spontaneous episodic initiation of one-sided subduction: insights from visco-elasto-plastic colloidal dispersions, submitted to Geophys. Res. LettGoogle Scholar
  172. 172.
    David T. Sandwell, Gerald Schubert, Science 257, 766 (1992)ADSCrossRefGoogle Scholar
  173. 173.
    H. Schouten, K.D. Klitgord, J.A. Whitehead, Nature 317, 225 (1985)ADSCrossRefGoogle Scholar
  174. 174.
    Ken C. Macdonald, P.J. Fox, L.J. Perram, M.F. Eisen, R.M. Haymon, S.P. Miller, S.M. Carbotte, M.H. Cormier, A.N. Shor, Nature 335, 217 (1988)ADSCrossRefGoogle Scholar
  175. 175.
    Suzanne M. Carbotte, Deborah K. Smith, Mathilde Cannat, Emily M. Klein, T.J. Wright, A. Ayele, D.J. Ferguson, T. Kidane, C. Vye-Brown, Tectonic and Magmatic Segmentation of the Global Ocean Ridge System: A Synthesis of Observations (Geological Society of London, 2015)Google Scholar
  176. 176.
    W. Oldenburg Douglas, N. Brune James, J. Geophys. Res. 80, 2575 (1975)ADSCrossRefGoogle Scholar
  177. 177.
    Jian Lin, E.M. Parmentier, J. Geophys. Res.: Solid Earth 95, 4909 (1990)CrossRefGoogle Scholar
  178. 178.
    Jason Phipps Morgan, Y. John Ghen, Nature 364, 706 (1993)ADSCrossRefGoogle Scholar
  179. 179.
    W. Roger Buck, Luc L. Lavier, Alexei N.B. Poliakov, Nature 434, 719 (2005)ADSCrossRefGoogle Scholar
  180. 180.
    Richard F. Katz, Rolf Ragnarsson, Eberhard Bodenschatz, New J. Phys. 7, 37 (2005)ADSCrossRefGoogle Scholar
  181. 181.
    Garrett Ito, Mark D. Behn, Geochem. Geophys. Geosyst. 9, Q09O12 (2008)Google Scholar
  182. 182.
    Taras Gerya, Science 329, 1047 (2010)ADSCrossRefGoogle Scholar
  183. 183.
    Tatiana Tentler, Valerio Acocella, J. Geophys. Res. 115, B01401 (2010)ADSGoogle Scholar
  184. 184.
    Aurore Sibrant, Eric Mittelstaedt, Anne Davaille, Ludovic Pauchard, Alban Aubertin, Lionel Auffray, Raphael Pidoux, Nat. Geosci. 11, 274 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Patrice Bacchin
    • 1
  • David Brutin
    • 2
  • Anne Davaille
    • 3
  • Erika Di Giuseppe
    • 4
  • Xiao Dong Chen
    • 5
  • Ioannis Gergianakis
  • Frédérique Giorgiutti-Dauphiné
    • 3
  • Lucas Goehring
    • 6
  • Yannick Hallez
    • 1
  • Rodolphe Heyd
    • 7
  • Romain Jeantet
    • 8
  • Cécile Le Floch-Fouéré
    • 8
  • Martine Meireles
    • 1
  • Eric Mittelstaedt
    • 9
  • Céline Nicloux
    • 10
  • Ludovic Pauchard
    • 3
    Email author
  • Marie-Louise Saboungi
    • 11
  1. 1.Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS, INPT, UPSToulouseFrance
  2. 2.Aix-Marseille University, IUSTI UMR CNRSMarseilleFrance
  3. 3.Laboratoire FASTUMR 7608 CNRS - Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  4. 4.MINES ParisTechPLS Research University, CEMEF - Centre de mise en forme des matériaux, UMR CNRS 7635, CS 10207Sophia Antipolis CedexFrance
  5. 5.Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material ScienceSoochow UniversitySuzhouChina
  6. 6.School of Science and TechnologyNottingham Trent UniversityNottinghamUK
  7. 7.LAMPA, Arts et Métiers ParisTechAngersFrance
  8. 8.Agrocampus Ouest, INRA, UMR STLORennesFrance
  9. 9.Department of Geological SciencesUniversity of IdahoMoscowUSA
  10. 10.Institut de Recherche Criminelle de la Gendarmerie NationalePontoiseFrance
  11. 11.Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC)CNRS UMR7590 - Université Pierre et Marie CurieParisFrance

Personalised recommendations