Advertisement

From current trace to the understanding of confined media

  • Jean Roman
  • Bruno Le Pioufle
  • Loïc Auvray
  • Juan Pelta
  • Laurent Bacri
Regular Article
  • 44 Downloads
Part of the following topical collections:
  1. Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016)

Abstract.

Nanopores constitute devices for the sensing of nano-objects such as ions, polymer chains, proteins or nanoparticles. We describe what information we can extract from the current trace. We consider the entrance of polydisperse chains into the nanopore, which leads to a conductance drop. We describe the detection of these current blockades according to their shape. Finally, we explain how data analysis can be used to enhance our understanding of physical processes in confined media.

Graphical abstract

Keywords

Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016) 

References

  1. 1.
    S. Bhakdi, R. Fuessle, J. Tranum-Jensen, Proc. Natl. Acad. Sci. U.S.A. 78, 5475 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    S.H. White, A.S. Ladokhin, S. Jayasinghe, K. Hristova, J. Biol. Chem. 276, 32395 (2001)CrossRefGoogle Scholar
  3. 3.
    M.D. Peraro, F.G. van der Goot, Nat. Rev. Microbiol. 14, 77 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Todd, W. Longstaff, J. Pet. Technol. 24, 874 (1972)CrossRefGoogle Scholar
  5. 5.
    J. Nittmann, G. Daccord, H.E. Stanley, Nature 314, 141 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    F. Brochard, P.G. De Gennes, J. Chem. Phys. 67, 52 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    M. Daoud, P. De Gennes, J. Phys. (Paris) 38, 85 (1977)CrossRefGoogle Scholar
  8. 8.
    S. Daoudi, F. Brochard, Macromolecules 11, 751 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    F. Brochard, P.G. De Gennes, J. Phys. Lett. 40, L399 (1979)CrossRefGoogle Scholar
  10. 10.
    T. Sakaue, E. Raphaël, P.G. de Gennes, F. Brochard-Wyart, Europhys. Lett. 72, 83 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    D. DeVault, J. Am. Chem. Soc. 65, 532 (1943)CrossRefGoogle Scholar
  12. 12.
    C.S. Effenhauser, G.J.M. Bruin, A. Paulus, M. Ehrat, Anal. Chem. 69, 3451 (1997)CrossRefGoogle Scholar
  13. 13.
    L. Beguin, B. Grassl, F. Brochard-Wyart, M. Rakib, H. Duval, Soft Matter 7, 96 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P.G. de Gennes, Proc. Natl. Acad. Sci. U.S.A. 96, 7262 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    G. Guillot, L. Leger, F. Rondelez, Macromolecules 18, 2531 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    J. Lal, Sunil K. Sinha, Loïc Auvray, J. Phys. II 7, 1597 (1997)Google Scholar
  17. 17.
    E.P. Gilbert, L. Auvray, J. Lal, Macromolecules 34, 4942 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    G. Oukhaled, L. Bacri, J. Mathe, J. Pelta, L. Auvray, EPL 82, 48003 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    L. Brun, M. Pastoriza-Gallego, G. Oukhaled, J. Mathé, L. Bacri, L. Auvray, J. Pelta, Phys. Rev. Lett. 100, 158302 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    B.J. Jeon, M. Muthukumar, ACS Macro Lett. 3, 911 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton, Proc. Natl. Acad. Sci. U.S.A. 97, 1079 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    A. Fennouri, C. Przybylski, M. Pastoriza-Gallego, L. Bacri, L. Auvray, R. Daniel, ACS Nano 6, 9672 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Oukhaled, J. Mathe, A.L. Biance, L. Bacri, J.M. Betton, D. Lairez, J. Pelta, L. Auvray, Phys. Rev. Lett. 98, 158101 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M. Pastoriza-Gallego, L. Rabah, G. Gibrat, B. Thiebot, F.G. van der Goot, L. Auvray, J.M. Betton, J. Pelta, J. Am. Chem. Soc. 133, 2923 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Oukhaled, L. Bacri, M. Pastoriza-Gallego, J.M. Betton, J. Pelta, ACS Chem. Biol. 7, 1935 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Bacri, A.G. Oukhaled, B. Schiedt, G. Patriarche, E. Bourhis, J. Gierak, J. Pelta, L. Auvray, J. Phys. Chem. B 115, 2890 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Ettedgui, J.J. Kasianowicz, A. Balijepalli, J. Am. Chem. Soc. 138, 7228 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Coglitore, A. Merenda, N. Giamblanco, L.F. Dumée, J.M. Janot, S. Balme, Phys. Chem. Chem. Phys. 20, 12799 (2018)CrossRefGoogle Scholar
  30. 30.
    M.T. Degiacomi, I. Iacovache, L. Pernot, M. Chami, M. Kudryashev, H. Stahlberg, F.G. van der Goot, M.D. Peraro, Nat. Chem. Biol. 9, 623 (2013)CrossRefGoogle Scholar
  31. 31.
    I. Iacovache, S. De Carlo, N. Cirauqui, M. Dal Peraro, F.G. van der Goot, B. Zuber, Nat. Commun. 7, 12062 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M.W. Parker, J.T. Buckley, J.P. Postma, A.D. Tucker, K. Leonard, F. Pattus, D. Tsernoglou, Nature 367, 292 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    M. Muthukumar, J. Chem. Phys. 118, 5174 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    M. Muthukumar, J. Chem. Phys. 132, 195101 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    B. Cressiot, A. Oukhaled, G. Patriarche, M. Pastoriza-Gallego, J.M. Betton, L. Auvray, M. Muthukumar, L. Bacri, J. Pelta, ACS Nano 6, 6236 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Moniatte, F. van der Goot, J. Buckley, F. Pattus, A. van Dorsselaer, FEBS Lett. 384, 269 (1996)CrossRefGoogle Scholar
  37. 37.
    F. Piguet, H. Ouldali, F. Discala, M.F. Breton, J.C. Behrends, J. Pelta, A. Oukhaled, Sci. Rep. 6, 38675 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    T. Gutsmann, T. Heimburg, U. Keyser, K.R. Mahendran, M. Winterhalter, Nat. Protoc. 10, 188 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Montal, P. Mueller, Proc. Natl. Acad. Sci. U.S.A. 69, 3561 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    D. Deamer, M. Akeson, D. Branton, Nat. Biotechnol. 34, 518 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Pedone, M. Firnkes, U. Rant, Anal. Chem. 81, 9689 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Balijepalli, J. Ettedgui, A.T. Cornio, J.W.F. Robertson, K.P. Cheung, J.J. Kasianowicz, C. Vaz, ACS Nano 8, 1547 (2014)CrossRefGoogle Scholar
  43. 43.
    Z. Gu, Y.L. Ying, C. Cao, P. He, Y.T. Long, Anal. Chem. 87, 907 (2015)CrossRefGoogle Scholar
  44. 44.
    C. Plesa, C. Dekker, Nanotechnology 26, 084003 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    J. Zhang, X. Liu, Y.L. Ying, Z. Gu, F.N. Meng, Y.T. Long, Nanoscale 9, 3458 (2017)CrossRefGoogle Scholar
  46. 46.
    G. Baaken, N. Ankri, A.K. Schuler, J. Ruehe, J.C. Behrends, ACS Nano 5, 8080 (2011)CrossRefGoogle Scholar
  47. 47.
    J. Larkin, R.Y. Henley, M. Muthukumar, J.K. Rosenstein, M. Wanunu, Biophys. J. 106, 696 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    J.E. Hall, J. Gen. Physiol. 66, 531 (1975)CrossRefGoogle Scholar
  49. 49.
    C. Raillon, P. Granjon, M. Graf, L.J. Steinbock, A. Radenovic, Nanoscale 4, 4916 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    F. Piguet, F. Discala, M.F. Breton, J. Pelta, L. Bacri, A. Oukhaled, J. Phys. Chem. Lett. 5, 4362 (2014)CrossRefGoogle Scholar
  51. 51.
    J.H. Forstater, K. Briggs, J.W.F. Robertson, J. Ettedgui, O. Marie-Rose, C. Vaz, J.J. Kasianowicz, V. Tabard-Cossa, A. Balijepalli, Anal. Chem. 88, 11900 (2016)CrossRefGoogle Scholar
  52. 52.
    S.C. Liu, M.X. Li, M.Y. Li, Y.Q. Wang, Y.L. Ying, Y.J. Wan, Y.T. Long Faraday Discuss.  https://doi.org/10.1039/C8FD00023A (2018)
  53. 53.
    S.E. Henrickson, M. Misakian, B. Robertson, J.J. Kasianowicz, Phys. Rev. Lett. 85, 3057 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    B. Cressiot, E. Braselmann, A. Oukhaled, A.H. Elcock, J. Pelta, P.L. Clark, ACS Nano 9, 9050 (2015)CrossRefGoogle Scholar
  55. 55.
    M.F. Breton, F. Discala, L. Bacri, D. Foster, J. Pelta, A. Oukhaled, J. Phys. Chem. Lett. 4, 2202 (2013)CrossRefGoogle Scholar
  56. 56.
    J.E. Reiner, J.J. Kasianowicz, B.J. Nablo, J.W.F. Robertson, Proc. Natl. Acad. Sci. U.S.A. 107, 12080 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    M. Boukhet, F. Piguet, H. Ouldali, M. Pastoriza-Gallego, J. Pelta, A. Oukhaled, Nanoscale 8, 18352 (2016)CrossRefGoogle Scholar
  58. 58.
    J.W.F. Robertson, C.G. Rodrigues, V.M. Stanford, K.A. Rubinson, O.V. Krasilnikov, J.J. Kasianowicz, Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    G. Baaken, I. Halimeh, L. Bacri, J. Pelta, A. Oukhaled, J.C. Behrends, ACS Nano 9, 6443 (2015)CrossRefGoogle Scholar
  60. 60.
    O.V. Krasilnikov, C.G. Rodrigues, S.M. Bezrukov, Phys. Rev. Lett. 97, 18301 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    A. Siria, M.L. Bocquet, L. Bocquet, Nat. Rev. Chem. 1, 0091 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jean Roman
    • 1
  • Bruno Le Pioufle
    • 2
  • Loïc Auvray
    • 3
  • Juan Pelta
    • 1
  • Laurent Bacri
    • 1
  1. 1.LAMBEUniv Evry, CNRS, CEA, Université Paris-SaclayEvryFrance
  2. 2.ENS Paris-Saclay, CNRS, Institut d’Alembert, SATIEUniversité Paris-SaclayCachanFrance
  3. 3.Matière et Systèmes ComplexesUniversité Paris Diderot/CNRS (UMR 7057)Paris, Cedex 13France

Personalised recommendations