Advertisement

Power law relationship between diffusion coefficients in multi-component glass forming liquids

  • Anshul D. S. Parmar
  • Shiladitya Sengupta
  • Srikanth Sastry
Regular Article
  • 21 Downloads

Abstract.

The slow down of dynamics in glass forming liquids as the glass transition is approached has been characterised through the Adam-Gibbs relation, which relates relaxation time scales to the configurational entropy. The Adam-Gibbs relation cannot apply simultaneously to all relaxation times scales unless they are coupled, and exhibit closely related temperature dependences. The breakdown of the Stokes-Einstein relation presents an interesting situation to the contrary, and in analysing it, it has recently been shown that the Adam-Gibbs relation applies to diffusion coefficients rather than to viscosity or structural relaxation times related to the decay of density fluctuations. However, for multi-component liquids --the typical cases considered in computer simulations, metallic glass formers, etc.-- such a statement raises the question of which diffusion coefficient is described by the Adam-Gibbs relation. All diffusion coefficients can be consistently described by the Adam-Gibbs relation if they bear a power law relationship with each other. Remarkably, we find that for a wide range of glass formers, and for a wide range of temperatures spanning the normal and the slow relaxation regimes, such a relationship holds. We briefly discuss possible rationalisations of the observed behaviour.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W. van Saarloos, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Vol. 150 (OUP Oxford, 2011). Google Scholar
  3. 3.
    F.W. Starr, J.F. Douglas, S. Sastry, J. Chem. Phys. 138, 12A541 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Greer, K. Kelton, S. Srikanth, Fragility of Glass-Forming Liquids (Hindustan Book Agency, 2013)Google Scholar
  5. 5.
    S. Karmakar, C. Dasgupta, S. Sastry, Annu. Rev. Condens. Matter Phys. 5, 255 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S. Karmakar, C. Dasgupta, S. Sastry, Rep. Prog. Phys. 79, 016601 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    E. Rössler, Phys. Rev. Lett. 65, 1595 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    F. Fujara, B. Geil, H. Sillescu, G. Fleischer, Z. Phys. B: Condens. Matter 88, 195 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Hodgdon, F.H. Stillinger, Phys. Rev. E 48, 207 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    G. Tarjus, D. Kivelson, J. Chem. Phys. 103, 3071 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    M.T. Cicerone, M.D. Ediger, J. Chem. Phys. 104, 7210 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    J. Douglas, D. Leporini, J. Non-Cryst. Solids 235, 137 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    X. Xia, P.G. Wolynes, J. Phys. Chem. B 105, 6570 (2001)CrossRefGoogle Scholar
  15. 15.
    D. Bonn, W.K. Kegel, J. Chem. Phys. 118, 2005 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    L. Berthier, Phys. Rev. E 69, 020201 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Jung, J.P. Garrahan, D. Chandler, Phys. Rev. E 69, 061205 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    S.H. Chong, Phys. Rev. E 78, 041501 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Chong, W. Kob, Phys. Rev. Lett. 102, 025702 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S.F. Swallen, M. Ediger, Soft Matter 7, 10339 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    J. Langer, arXiv preprint, arXiv:1108.2738 (2011)Google Scholar
  22. 22.
    B. Charbonneau, P. Charbonneau, Y. Jin, G. Parisi, F. Zamponi, J. Chem. Phys. 139, 164502 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    S. Sengupta, S. Karmakar, J. Chem. Phys. 140, 224505 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    B.P. Bhowmik, R. Das, S. Karmakar, J. Stat. Mech.: Theory Exp. 2016, 074003 (2016)CrossRefGoogle Scholar
  25. 25.
    A.D.S. Parmar, S. Shiladitya, S. Sastry, Phys. Rev. Lett. 119, 056001 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)ADSCrossRefGoogle Scholar
  27. 27.
    S. Sastry, Nature 409, 164 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    S. Sengupta, F. Vasconcelos, F. Affouard, S. Sastry, J. Chem. Phys. 135, 194503 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A.D. Parmar, S. Sastry, J. Phys. Chem. B 119, 11243 (2015)CrossRefGoogle Scholar
  30. 30.
    A.D. Parmar, P. Kundu, S. Sastry, J. Chem. Sci. 129, 1081 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Angell, J. Res. Natl. Inst. Stand. Technol. 102, 171 (1997)CrossRefGoogle Scholar
  32. 32.
    A. Scala, F.W. Starr, E. La Nave, F. Sciortino, H.E. Stanley, Nature 406, 166 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    S. Karmakar, C. Dasgupta, S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    S. Sengupta, T.B. Schrøder, S. Sastry, Eur. Phys. J. E 36, 141 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Banerjee, S. Sengupta, S. Sastry, S.M. Bhattacharyya, Phys. Rev. Lett. 113, 225701 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    K. Ito, C.T. Moynihan, C.A. Angell, Nature 398, 492 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    S. Sastry, Nature 398, 467 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    F.W. Starr, S. Sastry, E. La Nave, A. Scala, H.E. Stanley, F. Sciortino, Phys. Rev. E 63, 041201 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    F.W. Starr, C.A. Angell, H.E. Stanley, Physica A: Stat. Mech. Appl. 323, 51 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    S. Sengupta, S. Karmakar, C. Dasgupta, S. Sastry, Phys. Rev. Lett. 109, 095705 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    T. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Phys. Rev. A 40, 1045 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    V. Lubchenko, P.G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Bouchaud, G. Biroli, J. Chem. Phys. 121, 7347 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    J. Dudowicz, K.F. Freed, J.F. Douglas, Adv. Chem. Phys. 137, 125 (2008)Google Scholar
  45. 45.
    K.F. Freed, J. Chem. Phys. 141, 141102 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    S. Sengupta, S. Karmakar, C. Dasgupta, S. Sastry, J. Chem. Phys. 138, 12A548 (2013)CrossRefGoogle Scholar
  47. 47.
    H. Schober, H. Peng, Phys. Rev. E 93, 052607 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    S. Sastry, PhysChemComm 3, 79 (2000)CrossRefGoogle Scholar
  50. 50.
    A. Banerjee, M.K. Nandi, S. Sastry, S. Maitra Bhattacharyya, J. Chem. Phys. 147, 024504 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    M. Kluge, H. Schober, Phys. Rev. B 70, 224209 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    H. Teichler, J. Non-Cryst. Solids 293, 339 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    R.K. Murarka, B. Bagchi, Phys. Rev. E 67, 051504 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    L. Angelani, G. Foffi, J. Phys.: Condens. Matter 19, 256207 (2007)ADSGoogle Scholar
  55. 55.
    A. Carre, J. Horbach, S. Ispas, W. Kob, EPL 82, 17001 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    P. Fielitz, M.P. Macht, V. Naundorf, G. Frohberg, J. Non-Cryst. Solids 250, 674 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    M.P. Macht, V. Naundorf, P. Fielitz, J. Rüsing, T. Zumkley, G. Frohberg, Mater. Sci. Eng. A 304, 646 (2001)CrossRefGoogle Scholar
  58. 58.
    S. Sengupta, T.B. Schrøder, S. Sastry, Eur. Phys. J. E 36, 141 (2013)CrossRefGoogle Scholar
  59. 59.
    D.N. Perera, P. Harrowell, J. Chem. Phys. 111, 5441 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    L. Berthier, T.A. Witten, Phys. Rev. E 80, 021502 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    I. Saika-Voivod, E. Zaccarelli, F. Sciortino, S.V. Buldyrev, P. Tartaglia, Phys. Rev. E 70, 041401 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    S. Karmakar, A. Lemaitre, E. Lerner, I. Procaccia, Phys. Rev. Lett. 104, 215502 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Vol. 143 (OUP Oxford, 2008)Google Scholar
  65. 65.
    K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, 2011)Google Scholar
  66. 66.
    N. Bidhoodi, S.P. Das, arXiv preprint, arXiv:1803.11483 (2018)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anshul D. S. Parmar
    • 1
    • 2
  • Shiladitya Sengupta
    • 3
  • Srikanth Sastry
    • 1
  1. 1.Theoretical Sciences UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
  2. 2.Tata Institute of Fundamental ResearchHyderabadIndia
  3. 3.Department of Fundamental Engineering, Institute of Industrial ScienceThe University of TokyoMeguro-ku, TokyoJapan

Personalised recommendations