Arcuate wrinkling on stiff film/compliant substrate induced by thrust force with a controllable micro-probe

  • Yi Sun
  • Liping Yan
  • Benyong ChenEmail author
Regular Article


Wrinkling patterns are widely observed in nature and can be used in many high-tech applications such as microfluidic channel, self-assembly ordered microstructures and improved adhesives. In order to use the wrinkling patterns for these applications, it is necessary to precisely control the formation and geometry of the wrinkles. In this paper, we investigate the localized wrinkling of a stiff film/compliant substrate system subjected to a thrust force with a controllable micro-probe. A thin Au film is deposited onto a thick PDMS substrate attached to a glass to form the stiff film/compliant substrate system. And a micro-probe is controlled by a piezoelectric microrobotic system to exert a point force onto the stiff film/compliant substrate to demonstrate the evolution of the localized wrinkles. The experiments show that the film will wrinkle into orthoradial morphology spontaneously when it is deformed in the vertical direction, and then it will wrinkle into arcuate morphology with deformation in the horizontal direction. Since the compressive stress and tensile stress of the film are generated simultaneously, the evolution of the arcuate wrinkles is always accompanied by some radial cracks. The morphological characteristic, formation mechanism and dynamic evolution of the arcuate wrinkles are demonstrated and discussed in detail.

Graphical abstract


Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 


  1. 1.
    J.W. Wang, Y.P. Cao, X.Q. Feng, Appl. Phys. Lett. 104, 031910 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    E. Cerda, L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    X. Chen, J. Yin, Soft Matter 6, 5667 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Li, X. Li, W. Guo, M. Wu, J. Sun, Sci. China. Chem. 59, 1568 (2016)CrossRefGoogle Scholar
  5. 5.
    S.J. Yu, Y.P. Du, Y.D. Sun, Q.L. Ye, H. Zhou, Thin Solid Films 638, 230 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Nature 393, 146 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    R.D. Schroll, M. Adda-Bedia, E. Cerda, J. Huang, N. Menon, T.P. Russell, K.B. Toga, D. Vella, B. Davidovitch, Phys. Rev. Lett. 111, 014301 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Breid, A.J. Crosby, Soft Matter 7, 4490 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    C. Li, X. Zhang, Z. Cao, Science 309, 909 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    H. Vandeparre, M. Piñeirua, F. Brau, B. Roman, J. Bico, C. Gay, W. Bao, C.N. Lau, P.M. Reis, P. Damman, Phys. Rev. Lett. 106, 224301 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    B. Li, Y.P. Cao, X.Q. Feng, H. Gao, Soft Matter 8, 5728 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Huang, M. Juszkiewicz, W.H. de Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Science 317, 650 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    M. Piñeirua, N. Tanaka, B. Roman, J. Bico, Soft Matter 9, 10985 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    B.F. Zhang, K. Li, J. Zhao, Sci. China. Phys. Mech. Astron. 57, 1574 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson, G.M. Whitesides, Langmuir 16, 3497 (2000)CrossRefGoogle Scholar
  16. 16.
    N. Bowden, W.T.S. Huck, K.E. Paul, G.M. Whitesides, Appl. Phys. Lett. 75, 2557 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    C.R. Li, Q. Xu, N.P. Lu, W.J. Dong, Z.X. Cao, Sci. Sin. Phys. Mech. Astron. 42, 934 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Khare, J. Zhou, S. Yang, Langmuir 25, 12794 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Yu, H. Jiang, Thin Solid Films 519, 818 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G. Miquelard-Garnier, A.B. Croll, C.S. Davis, A.J. Crosby, Soft Matter 6, 5789 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    C.S. Davis, A.J. Crosby, Soft Matter 7, 5373 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Y.C. Chen, A.J. Crosby, Soft Matter 9, 43 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K.K. Parker, P. Damman, Soft Matter 6, 5751 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    X. Chen, J.W. Hutchinson, J. Appl. Mech. 71, 597 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    X. Chen, J.W. Hutchinson, Scr. Mater. 50, 797 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Yu, X. Zhang, X. Xiao, H. Zhou, M. Chen, Soft Matter 11, 2203 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    J.Y. Chung, A.J. Nolte, C.M. Stafford, Adv. Mater. 21, 1358 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Sun, L. Yan, C. Li, B. Chen, Eur. Phys. J. E 41, 31 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    D. Vella, J. Huang, N. Menon, T.P. Russell, B. Davidovitch, Phys. Rev. Lett. 114, 014301 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    D.P. Holmes, A.J. Crosby, Phys. Rev. Lett. 105, 038303 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Phys. Rev. Lett. 107, 174301 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    H. Mohammadi, M.H. Müser, Phys. Rev. Lett. 105, 224301 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    R. Bernal, C. Tassius, F. Melo, J.-Ch. Géminard, Eur. Phys. J. E 34, 13 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Qiao, L. He, Y. Ni, Int. J. Solids Struct. 50, 3742 (2013)CrossRefGoogle Scholar
  35. 35.
    X. Huang, H.P. Zhao, W.H. Xie, W. Hong, X.Q. Feng, Int. J. Solids Struct. 58, 12 (2015)CrossRefGoogle Scholar
  36. 36.
    S.J. Yu, X.F. Xiao, M.G. Chen, H. Zhou, J. Chen, P.Z. Si, Z.W. Jiao, Acta. Mater. 64, 41 (2014)CrossRefGoogle Scholar
  37. 37.
    T. Ohzono, H. Monobe, K. Shiokawa, M. Fujiwara, Y. Shimizu, Soft Matter 5, 4658 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    C. Yu, K. O’Brien, Y.H. Zhang, H. Yu, H. Jiang, Appl. Phys. Lett. 96, 041111 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    J.Y. Chung, A.J. Nolte, C.M. Stafford, Adv. Mater. 23, 349 (2011)CrossRefGoogle Scholar
  40. 40.
    J.Y. Chuang, T.Q. Chastek, M.J. Fasolka, H.W. Ro, C.M. Stafford, ACS Nano 3, 844 (2009)CrossRefGoogle Scholar
  41. 41.
    D.Y. Khang, J.A. Rogers, H.H. Lee, Adv. Funct. Mater. 19, 1526 (2009)CrossRefGoogle Scholar
  42. 42.
    J.A. Rogers, T. Someya, Y. Huang, Science 327, 1603 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    C.J. Rand, R. Sweeney, M. Morrissey, L. Hazel, A.J. Crosby, Soft Matter 4, 1805 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Xuan, X. Guo, Y. Cui, C. Yuan, H. Ge, B. Cui, Y. Chen, Soft Matter 8, 9603 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    P. Nandakishore, L. Goehring, Soft Matter 12, 2253 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    V. Lazarus, L. Pauchard, Soft Matter 7, 2552 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J. Marthelot, B. Roman, J. Bico, J. Teisseire, D. Dalmas, F. Melo, Phys. Rev. Lett. 113, 085502 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    F. Matsuda, T. Sobajima, S. Irie, T. Sasaki, Eur. Phys. J. E 39, 41 (2016)CrossRefGoogle Scholar
  49. 49.
    T. Liu, H. Luo, J. Ma, W. Xie, Y. Wang, G. Jing, Eur. Phys. J. E 39, 24 (2016)CrossRefGoogle Scholar
  50. 50.
    E. Cerda, J. Biomech. 38, 1598 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Nanoscience and NanotechnologyZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations