Advertisement

The concept of strongly interacting groups in self-assembly of soft matter

  • I. A. Nyrkova
  • A. N. Semenov
Colloquium

Abstract.

Amphiphilic molecules in solution typically produce structures coming from cooperative interactions of many synergetically acting functional units. If all essential interactions are weak, the structure can be treated theoretically based on a free energy expansion for small interaction parameters. However, most self-assembling soft matter systems involve strong specific interactions of functional units leading to qualitatively new structures of highly soluble micellar or fibrillar aggregates. Here we focus on the systems with the so-called strongly interacting groups (SIGs) incorporated into unimer molecules and discuss the effects of packing frustrations and unimer chirality as well as the origins of spontaneous morphological chirality in the case of achiral unimers. We describe several theoretical approaches (overcoming the limitations of weak interaction models) including the concepts of super-strong segregation, geometrical mismatch and orientational frustration. We also review some recently developed phenomenological theories of surfactant membranes and multiscale hierarchical approaches based on all-atomic modeling of packing structures of amphiphilic molecules with SIGs. In particular, we discuss self-assembling structures in systems possessing simultaneously several distinct types of SIGs: solutions of beta-sheet oligopeptides (showing different fibrillar morphologies), aromatic diamide-ester molecules (forming membranes, helical ribbons and tubules), and triarylamine amide derivatives (producing light-controlled supramolecular nanowires).

Graphical abstract

Keywords

Soft Matter: Self-organisation and Supramolecular Assemblies 

References

  1. 1.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)Google Scholar
  2. 2.
    P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press: Ithaca, 1979)Google Scholar
  3. 3.
    A. Grosberg, A. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, New York, 1994)Google Scholar
  4. 4.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, UK, 2003)Google Scholar
  5. 5.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1998)Google Scholar
  6. 6.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1998)Google Scholar
  7. 7.
    A.N. Semenov, Phys. Rev. E 73, 041803 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    P.G. De Gennes, Adv. Colloid. Interface Sci. 27, 189 (1987)CrossRefGoogle Scholar
  9. 9.
    I.A. Nyrkova, A.R. Khokhlov, M. Doi, Macromolecules 26, 3601 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Macromolecules 28, 7491 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Statistics and dynamics of ionomers, in Ionomers: Characterization, Theory and Applications, edited by S. Schlick (CRC Press, 1996) pp. 251--279Google Scholar
  12. 12.
    M.J. Folkes (Editor), Processing, Structure and Properties of Block-Copolymers (Elsevier, New York, 1985)Google Scholar
  13. 13.
    I. Goodman (Editor), Developments in Block Copolymers (Applied Science Publishers, New York, 1982) Vol. 1 and Vol. 2 (1985)Google Scholar
  14. 14.
    E. Helfand, Z.R. Wasserman, Macromolecules 13, 994 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    L. Leibler, Macromolecules 13, 1602 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    A.N. Semenov, Sov. Phys. JETP 61, 733 (1985) (A.N. Semenov, Zh. Eksp. Teor. Fiz. 88Google Scholar
  17. 17.
    G.H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    A.N. Semenov, Macromolecules 22, 2849 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    M. Daoud, J.P. Cotton, J. Phys. 43, 531 (1982)CrossRefGoogle Scholar
  20. 20.
    T.A. Witten, P.A. Pincus, Macromolecules 19, 2509 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    T.M. Birshtein, E.B. Zhulina, Polymer 30, 170 (1989)CrossRefGoogle Scholar
  22. 22.
    P.G. Khalatur, A.R. Khokhlov, I.A. Nyrkova, A.N. Semenov, Macromol. Theory Simul. 5, 713 (1996)CrossRefGoogle Scholar
  23. 23.
    P.G. Khalatur, A.R. Khokhlov, I.A. Nyrkova, A.N. Semenov, Macromol. Theory Simul. 5, 749 (1996)CrossRefGoogle Scholar
  24. 24.
    A.V. Rebrov, A.N. Ozerin, D.I. Svergun, L.P. Bobrova, N.F. Bakeev, Vysokomol. Soedin. 32A, 1593 (1990)Google Scholar
  25. 25.
    C. Hilger, M. Drager, R. Stadler, Macromolecules 25, 2498 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    C. Hilger, R. Stadler, Macromolecules 25, 6670 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    X. Lu, W.P. Steckle, R.A. Weiss, Macromolecules 26, 5876 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    X. Lu, W.P. Steckle jr., R.A. Weiss, Macromolecules 26, 6525 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    J.-S. Kim, J. Jackman, A. Eisenberg, Macromolecules 27, 2789 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    S.J. Holder, N.A.J.M. Sommerdijk, Polym. Chem. 2, 1018 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Ramzi, M. Prager, D. Richter, V. Efstratiadis, N. Hadjichristidis, R.N. Young, J.B. Allgaier, Macromolecules 30, 7171 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    W. Wang, R. Liu, Z. Li, C. Meng, Q. Wu, F. Zhu, Macromol. Chem. Phys. 211, 1452 (2010)CrossRefGoogle Scholar
  33. 33.
    A. Constancis, R. Meyrueix, N. Bryson, S. Huille, J.M. Grosselin, T. Gulik-Krzywicki, G. Soula, J. Colloid Interface Sci. 217, 357 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    I.K. Voets, A. de Keizer, P. de Waard, P.M. Frederik, P.H.H. Bomans, H. Schmalz, A. Walther, S.M. King, F.A.M. Leermakers, M.A. Cohen Stuart, Angew. Chem., Int. Ed. 45, 6673 (2006)CrossRefGoogle Scholar
  35. 35.
    Gregory M. Grason, J. Chem. Phys. 145, 110901 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Jean-François Sadoc, Rémy Mosseri, Geometrical Frustration (Cambridge University Press, Cambridge, UK, 1999) ISBN 0521441986Google Scholar
  37. 37.
    R.B. Gennis, Biomembranes (Springer-Verlag, Berlin, 1989)Google Scholar
  38. 38.
    S. Karaborni, S. Toxvaerd, J. Chem. Phys. 97, 5876 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    A.N. Semenov, Mol. Cryst. Liq. Cryst. 209, 191 (1991)CrossRefGoogle Scholar
  40. 40.
    Peter S. Stevens, Patterns in Nature (Little, Brown & Co., 1974)Google Scholar
  41. 41.
    A. Jamal, I. Nyrkova, Ph. Mesini, S. Militzer, G. Reiter, Nanoscale 9, 3293 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Wintermantel, K. Fischer, M. Gerle et al., Angew. Chem. 34, 1472 (1995)CrossRefGoogle Scholar
  43. 43.
    A.V. Subbotin, A.N. Semenov, Polym. Sci. A 49, 1328 (2007)CrossRefGoogle Scholar
  44. 44.
    T. Nakano, Y. Okamoto, Chem. Rev. 101, 4013 (2001)CrossRefGoogle Scholar
  45. 45.
    K. Akagi, Chem. Rev. 109, 5354 (2009)CrossRefGoogle Scholar
  46. 46.
    K. Akagi, G. Piao, S. Kaneko et al., Science 282, 1683 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    M.M. Green, J.-W. Park, T. Sato, A. Teramoto, S. Lifson, R.L.B. Selinger, J.V. Selinger, Angew. Chem., Int. Ed. 39, 3138 (1999)CrossRefGoogle Scholar
  48. 48.
    J.V. Selinger, M.S. Spector, J.M. Schur, J. Phys. Chem. B 105, 7157 (2001)CrossRefGoogle Scholar
  49. 49.
    J.M. Schnur, Science 262, 1669 (1993)ADSCrossRefGoogle Scholar
  50. 50.
    J.M. Schnur, R. Shashidhar, Adv. Mater. 6, 971 (1994)CrossRefGoogle Scholar
  51. 51.
    R. Oda, I. Huc, S.J. Candau, Angew. Chem. 37, 2689 (1998)CrossRefGoogle Scholar
  52. 52.
    R. Oda, M. Schmutz, S.J. Candau, F.C. Mackintosh, Nature 399, 566 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    I.A. Nyrkova, A.N. Semenov, Soft Matter 6, 501 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    R. Lipowsky, Nature 349, 475 (1991)ADSCrossRefGoogle Scholar
  55. 55.
    W. Helfrich, J. Prost, Phys. Rev. A 38, 3065 (1988)ADSCrossRefGoogle Scholar
  56. 56.
    D.S. Chung, G.B. Benedek, F.M. Konikoff, J.M. Donovan, Proc. Natl. Acad. Sci. U.S.A. 90, 11341 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    Z.C. Tu, U. Seifert, Phys. Rev. E 76, 031603 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Wang, D. Zhou, H. Li, R. Li, Y. Zhong, X. Sun, X. Sun, J. Mater. Chem. C 2, 6402 (2014)CrossRefGoogle Scholar
  59. 59.
    M.S. Spector, V.J. Selinger, A. Singh, J.M. Rodriguez, R.R. Price, J.M. Schnur, Langmuir 14, 3493 (1999)CrossRefGoogle Scholar
  60. 60.
    A. Brizard, C. Aim, T. Labrot, I. Huc, D. Berthier, F. Artzner, B. Desbat, R. Oda, J. Am. Chem. Soc. 129, 3754 (2007)CrossRefGoogle Scholar
  61. 61.
    W. Si et al., Tetrahedron Lett. 52, 2484 (2011)CrossRefGoogle Scholar
  62. 62.
    D. Berthier, T. Buffeteau, J.-M. Leger, R. Oda, I. Huc, J. Am. Chem. Soc. 124, 13486 (2002)CrossRefGoogle Scholar
  63. 63.
    R. Oda, F. Artzner, M. Laguerre, I. Huc, J. Am. Chem. Soc. 130, 14705 (2008)CrossRefGoogle Scholar
  64. 64.
    D.G. Rhodes et al., Chem. Phys. Lipids 49, 39 (1988)CrossRefGoogle Scholar
  65. 65.
    J.B. Lando, R.V. Sudiwala, Chem. Mater. 2, 594 (1990)CrossRefGoogle Scholar
  66. 66.
    M. Caffrey, J. Hogan, A.S. Rudolph, Biochemistry 30, 2134 (1991)CrossRefGoogle Scholar
  67. 67.
    E. Sackmann, A. Fischer, W. Frey, in Physics of Amphiphilic Layers (Springer, Berlin, 1987)Google Scholar
  68. 68.
    D.R. Nelson, L. Peliti, J. Phys. (Paris) 48, 1085 (1987)CrossRefGoogle Scholar
  69. 69.
    H.S. Seung, D.R. Nelson, Phys. Rev. A 38, 1005 (1988)ADSCrossRefGoogle Scholar
  70. 70.
    B.N. Thomas et al., Science 267, 1635 (1995)ADSCrossRefGoogle Scholar
  71. 71.
    A. Aggeli, M. Bell, N. Boden et al., Nature 386, 259 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    I.A. Nyrkova, A.N. Semenov, A. Aggeli, N. Boden, Eur. Phys. J. B 17, 481 (2000)ADSCrossRefGoogle Scholar
  73. 73.
    A. Aggeli, M. Bell, N. Boden, J.N. Keen, T.C.B. McLeish, I. Nyrkova, S.E. Radford, A. Semenov, J. Mater. Chem. 7, 1135 (1997)CrossRefGoogle Scholar
  74. 74.
    A. Aggeli, M. Bell, N. Boden, R. Harding, T.C.B. McLeish, I. Nyrkova, S.E. Radford, A. Semenov, Biochemist 22, 10 (2000)Google Scholar
  75. 75.
    I.A. Nyrkova, A.N. Semenov, A. Aggeli, M. Bell, N. Boden, T.C.B. McLeish, Eur. Phys. J. B 17, 499 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    A. Aggeli, I.A. Nyrkova, M. Bell, R. Harding, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Proc. Natl. Acad. Sci. U.S.A. 98, 11857 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    A. Aggeli, I.A. Nyrkova, M. Bell, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Exploiting peptide self-assembly to engineer novel biopolymers: tapes, ribbons, fibrils and fibres, in Self-assembling Peptide Systems in Biology Medicine and Engineering, edited by A. Aggeli, N. Boden, S. Zhang (Kluwer Academic Publishers, 2001) pp. 1--17Google Scholar
  78. 78.
    R.P.W. Davies, A. Aggeli, A.J. Beevers, N. Boden, L.M. Carrick, C.W.G. Fishwick, T.C.B. McLeish, I.A. Nyrkova, A.N. Semenov, Supramol. Chem. 18, 435 (2006)CrossRefGoogle Scholar
  79. 79.
    R.P.W. Davies, B. Liu, S. Maude, L.M. Carrick, Irina Nyrkova, Tom C. McLeish, Sarah A. Harris, Biopolymers 110, e23073 (2018)CrossRefGoogle Scholar
  80. 80.
    A. Aggeli, M. Bell, N. Boden, L. Carrick, R. Harding, T.C.B. McLeish, I.A. Nyrkova, A.N. Semenov, Impact of chirality on one-dimensional self-assembling systems, in Self-Assembly (IOS Press, 2003) pp. 92--104Google Scholar
  81. 81.
    F.E. Cohen, J. Mol. Biol. 293, 313 (1999)CrossRefGoogle Scholar
  82. 82.
    S.Y. Tan, M.B. Pepys, Amyloidosis Histopathol. 25, 403 (1994)CrossRefGoogle Scholar
  83. 83.
    C.F. Jordan, L.S. Lerman, J.H. Venable, Nature 236, 67 (1972)CrossRefGoogle Scholar
  84. 84.
    A.A. Zinchenko, V.G. Sergeyev, V.A. Kabanov, S. Murata, K. Yoshikawa, Angew. Chem., Int. Ed. 43, 2377 (2004)CrossRefGoogle Scholar
  85. 85.
    A.A. Zinchenko, N. Chen, S. Murata, K. Yoshikawa, ChemBioChem 6, 1419 (2005)CrossRefGoogle Scholar
  86. 86.
    I.A. Nyrkova, A.N. Semenov, Soft Matter 5, 979 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    S. Wang, Y. Zhang, Y. Xia, B. Song, Nanoscale 7, 17848 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    J. Kim, J. Lee, W.Y. Kim, H. Kim, S. Lee, H.C. Lee, Y.S. Lee, M. Seo, S.Y. Kim, Nat. Commun. 6, 6959 (2015)ADSCrossRefGoogle Scholar
  89. 89.
    D.D. La Anuradha, M. Al Kobaisi, S.V. Bhosale, Sci. Rep. 5, 15652 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    B. Song, B. Liu, Y. Jin, X. He, D. Tang, G. Wu, S. Yin, Nanoscale 7, 930 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    W. Yang, X. Chai, L. Chi, X. Liu, Y. Cao, R. Lu, Y. Jiang, X. Tang, H. Fuchs, T. Li, Chem. Eur. J. 5, 1144 (1999)CrossRefGoogle Scholar
  92. 92.
    J.M. Ribo, J. Crusats, F. Sagues, J. Claret, R. Rubires, Science 292, 2063 (2001)CrossRefGoogle Scholar
  93. 93.
    S. Pakhomov, R.P. Hammer, B.K. Mishra, B.N. Thomas, Proc. Natl. Acad. Sci. U.S.A. 100, 3050 (2003)ADSCrossRefGoogle Scholar
  94. 94.
    U. Seifert, J. Shillcock, P. Nelson, Phys. Rev. Lett. 77, 5237 (1996)ADSCrossRefGoogle Scholar
  95. 95.
    J.V. Selinger, Z.-G. Wang, R.F. Bruinsma, C.M. Knobler, Phys. Rev. Lett. 70, 1139 (1993)ADSCrossRefGoogle Scholar
  96. 96.
    J.V. Selinger, J.M. Schnur, Phys. Rev. Lett. 71, 4091 (1993)ADSCrossRefGoogle Scholar
  97. 97.
    J.V. Selinger, F.C. MacKintosh, J.M. Schnur, Phys. Rev. E 53, 3804 (1996)ADSCrossRefGoogle Scholar
  98. 98.
    R. Koynova, M. Caffrey, Biophys. Acta 1376, 91 (1998)Google Scholar
  99. 99.
    O. Lenz, F. Schmid, Phys. Rev. Lett. 98, 058104 (2007)ADSCrossRefGoogle Scholar
  100. 100.
    A.H. de Vries, S. Yefimov, A.E. Mark, S.J. Marrink, Proc. Natl. Acad. Sci. U.S.A. 102, 5392 (2005)ADSCrossRefGoogle Scholar
  101. 101.
    A. Singh et al., Chem. Phys. Lipids 47, 135 (1988)CrossRefGoogle Scholar
  102. 102.
    I. Nyrkova, E. Moulin, J.J. Armao IV, M. Maaloum, B. Heinrich, M. Rawiso, F. Niess, J.-J. Cid, N. Jouault, E. Buhler, A.N. Semenov, N. Giuseppone, ACS Nano 8, 10111 (2014)CrossRefGoogle Scholar
  103. 103.
    J.J. Armao IV, I. Nyrkova, G. Fuks, A. Osypenko, M. Maaloum, E. Moulin, R. Arenal, O. Gavat, A. Semenov, N. Giuseppone, J. Am. Chem. Soc. 139, 2345 (2017)CrossRefGoogle Scholar
  104. 104.
    D.M. Bassani, J.-M. Lehn, G. Baum, D. Fenske, Angew. Chem., Int. Ed. 36, 1845 (1997)CrossRefGoogle Scholar
  105. 105.
    N. Diaz, F.-X. Simon, M. Schmutz, M. Rawiso, G. Decher, J. Jestin, P.J. Mesini, Angew. Chem. 44, 3260 (2005)CrossRefGoogle Scholar
  106. 106.
    N. Diaz, F.X. Simon, M. Schmutz, P. Mesini, Macromol. Symp. 241, 68 (2006)CrossRefGoogle Scholar
  107. 107.
    F.X. Simon, T.T. Tam Nguyen, N. Diaz, M. Schmutz, B. Deme, J. Jestin, J. Combet, P.J. Mesini, Soft Matter 9, 8483 (2013)ADSCrossRefGoogle Scholar
  108. 108.
    I.A. Nyrkova, A.N. Semenov, Polymer 145, 202 (2018)CrossRefGoogle Scholar
  109. 109.
    Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007)CrossRefGoogle Scholar
  110. 110.
    E. Moulin, F. Niess, M. Maaloum, E. Buhler, I. Nyrkova, N. Giuseppone, Angew. Chem., Int. Ed. 49, 6974 (2010)CrossRefGoogle Scholar
  111. 111.
    I.A. Nyrkova, A.N. Semenov, Eur. Phys. J. E 24, 167 (2007)CrossRefGoogle Scholar
  112. 112.
    E. Moulin, F. Niess, N. Jouault, E. Buhler, N. Giuseppone, Nanoscale 4, 6748 (2012)ADSCrossRefGoogle Scholar
  113. 113.
    V. Faramarzi, F. Niess, E. Moulin, M. Maaloum, J.-F. Dayen, J.-B. Beaufrand, S. Zanettini, B. Doudin, N. Giuseppone, Nat. Chem. 4, 485 (2012)CrossRefGoogle Scholar
  114. 114.
    E. Moulin, J.-J. Martin, N. Giuseppone, Adv. Mater. 25, 477 (2013)CrossRefGoogle Scholar
  115. 115.
    N. Giuseppone, Acc. Chem. Res. 45, 2178 (2012)CrossRefGoogle Scholar
  116. 116.
    J.J. Armao, M. Maaloum, T. Ellis, G. Fuks, M. Rawiso, E. Moulin, N. Giuseppone, J. Am. Chem. Soc. 136, 11382 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Charles Sadron, CNRS - UPR 22Université de StrasbourgStrasbourg Cedex 2France

Personalised recommendations