Advertisement

The concept of strongly interacting groups in self-assembly of soft matter

  • I. A. Nyrkova
  • A. N. SemenovEmail author
Colloquium

Abstract.

Amphiphilic molecules in solution typically produce structures coming from cooperative interactions of many synergetically acting functional units. If all essential interactions are weak, the structure can be treated theoretically based on a free energy expansion for small interaction parameters. However, most self-assembling soft matter systems involve strong specific interactions of functional units leading to qualitatively new structures of highly soluble micellar or fibrillar aggregates. Here we focus on the systems with the so-called strongly interacting groups (SIGs) incorporated into unimer molecules and discuss the effects of packing frustrations and unimer chirality as well as the origins of spontaneous morphological chirality in the case of achiral unimers. We describe several theoretical approaches (overcoming the limitations of weak interaction models) including the concepts of super-strong segregation, geometrical mismatch and orientational frustration. We also review some recently developed phenomenological theories of surfactant membranes and multiscale hierarchical approaches based on all-atomic modeling of packing structures of amphiphilic molecules with SIGs. In particular, we discuss self-assembling structures in systems possessing simultaneously several distinct types of SIGs: solutions of beta-sheet oligopeptides (showing different fibrillar morphologies), aromatic diamide-ester molecules (forming membranes, helical ribbons and tubules), and triarylamine amide derivatives (producing light-controlled supramolecular nanowires).

Graphical abstract

Keywords

Soft Matter: Self-organisation and Supramolecular Assemblies 

References

  1. 1.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)Google Scholar
  2. 2.
    P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press: Ithaca, 1979)Google Scholar
  3. 3.
    A. Grosberg, A. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, New York, 1994)Google Scholar
  4. 4.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, UK, 2003)Google Scholar
  5. 5.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1998)Google Scholar
  6. 6.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1998)Google Scholar
  7. 7.
    A.N. Semenov, Phys. Rev. E 73, 041803 (2006)ADSGoogle Scholar
  8. 8.
    P.G. De Gennes, Adv. Colloid. Interface Sci. 27, 189 (1987)Google Scholar
  9. 9.
    I.A. Nyrkova, A.R. Khokhlov, M. Doi, Macromolecules 26, 3601 (1993)ADSGoogle Scholar
  10. 10.
    A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Macromolecules 28, 7491 (1995)ADSGoogle Scholar
  11. 11.
    A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Statistics and dynamics of ionomers, in Ionomers: Characterization, Theory and Applications, edited by S. Schlick (CRC Press, 1996) pp. 251--279Google Scholar
  12. 12.
    M.J. Folkes (Editor), Processing, Structure and Properties of Block-Copolymers (Elsevier, New York, 1985)Google Scholar
  13. 13.
    I. Goodman (Editor), Developments in Block Copolymers (Applied Science Publishers, New York, 1982) Vol. 1 and Vol. 2 (1985)Google Scholar
  14. 14.
    E. Helfand, Z.R. Wasserman, Macromolecules 13, 994 (1980)ADSGoogle Scholar
  15. 15.
    L. Leibler, Macromolecules 13, 1602 (1980)ADSGoogle Scholar
  16. 16.
    A.N. Semenov, Sov. Phys. JETP 61, 733 (1985) (A.N. Semenov, Zh. Eksp. Teor. Fiz. 88Google Scholar
  17. 17.
    G.H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987)ADSGoogle Scholar
  18. 18.
    A.N. Semenov, Macromolecules 22, 2849 (1989)ADSGoogle Scholar
  19. 19.
    M. Daoud, J.P. Cotton, J. Phys. 43, 531 (1982)Google Scholar
  20. 20.
    T.A. Witten, P.A. Pincus, Macromolecules 19, 2509 (1986)ADSGoogle Scholar
  21. 21.
    T.M. Birshtein, E.B. Zhulina, Polymer 30, 170 (1989)Google Scholar
  22. 22.
    P.G. Khalatur, A.R. Khokhlov, I.A. Nyrkova, A.N. Semenov, Macromol. Theory Simul. 5, 713 (1996)Google Scholar
  23. 23.
    P.G. Khalatur, A.R. Khokhlov, I.A. Nyrkova, A.N. Semenov, Macromol. Theory Simul. 5, 749 (1996)Google Scholar
  24. 24.
    A.V. Rebrov, A.N. Ozerin, D.I. Svergun, L.P. Bobrova, N.F. Bakeev, Vysokomol. Soedin. 32A, 1593 (1990)Google Scholar
  25. 25.
    C. Hilger, M. Drager, R. Stadler, Macromolecules 25, 2498 (1992)ADSGoogle Scholar
  26. 26.
    C. Hilger, R. Stadler, Macromolecules 25, 6670 (1992)ADSGoogle Scholar
  27. 27.
    X. Lu, W.P. Steckle, R.A. Weiss, Macromolecules 26, 5876 (1993)ADSGoogle Scholar
  28. 28.
    X. Lu, W.P. Steckle jr., R.A. Weiss, Macromolecules 26, 6525 (1993)ADSGoogle Scholar
  29. 29.
    J.-S. Kim, J. Jackman, A. Eisenberg, Macromolecules 27, 2789 (1994)ADSGoogle Scholar
  30. 30.
    S.J. Holder, N.A.J.M. Sommerdijk, Polym. Chem. 2, 1018 (2011)Google Scholar
  31. 31.
    A. Ramzi, M. Prager, D. Richter, V. Efstratiadis, N. Hadjichristidis, R.N. Young, J.B. Allgaier, Macromolecules 30, 7171 (1997)ADSGoogle Scholar
  32. 32.
    W. Wang, R. Liu, Z. Li, C. Meng, Q. Wu, F. Zhu, Macromol. Chem. Phys. 211, 1452 (2010)Google Scholar
  33. 33.
    A. Constancis, R. Meyrueix, N. Bryson, S. Huille, J.M. Grosselin, T. Gulik-Krzywicki, G. Soula, J. Colloid Interface Sci. 217, 357 (1999)ADSGoogle Scholar
  34. 34.
    I.K. Voets, A. de Keizer, P. de Waard, P.M. Frederik, P.H.H. Bomans, H. Schmalz, A. Walther, S.M. King, F.A.M. Leermakers, M.A. Cohen Stuart, Angew. Chem., Int. Ed. 45, 6673 (2006)Google Scholar
  35. 35.
    Gregory M. Grason, J. Chem. Phys. 145, 110901 (2016)ADSGoogle Scholar
  36. 36.
    Jean-François Sadoc, Rémy Mosseri, Geometrical Frustration (Cambridge University Press, Cambridge, UK, 1999) ISBN 0521441986Google Scholar
  37. 37.
    R.B. Gennis, Biomembranes (Springer-Verlag, Berlin, 1989)Google Scholar
  38. 38.
    S. Karaborni, S. Toxvaerd, J. Chem. Phys. 97, 5876 (1992)ADSGoogle Scholar
  39. 39.
    A.N. Semenov, Mol. Cryst. Liq. Cryst. 209, 191 (1991)Google Scholar
  40. 40.
    Peter S. Stevens, Patterns in Nature (Little, Brown & Co., 1974)Google Scholar
  41. 41.
    A. Jamal, I. Nyrkova, Ph. Mesini, S. Militzer, G. Reiter, Nanoscale 9, 3293 (2017)Google Scholar
  42. 42.
    M. Wintermantel, K. Fischer, M. Gerle et al., Angew. Chem. 34, 1472 (1995)Google Scholar
  43. 43.
    A.V. Subbotin, A.N. Semenov, Polym. Sci. A 49, 1328 (2007)Google Scholar
  44. 44.
    T. Nakano, Y. Okamoto, Chem. Rev. 101, 4013 (2001)Google Scholar
  45. 45.
    K. Akagi, Chem. Rev. 109, 5354 (2009)Google Scholar
  46. 46.
    K. Akagi, G. Piao, S. Kaneko et al., Science 282, 1683 (1998)ADSGoogle Scholar
  47. 47.
    M.M. Green, J.-W. Park, T. Sato, A. Teramoto, S. Lifson, R.L.B. Selinger, J.V. Selinger, Angew. Chem., Int. Ed. 39, 3138 (1999)Google Scholar
  48. 48.
    J.V. Selinger, M.S. Spector, J.M. Schur, J. Phys. Chem. B 105, 7157 (2001)Google Scholar
  49. 49.
    J.M. Schnur, Science 262, 1669 (1993)ADSGoogle Scholar
  50. 50.
    J.M. Schnur, R. Shashidhar, Adv. Mater. 6, 971 (1994)Google Scholar
  51. 51.
    R. Oda, I. Huc, S.J. Candau, Angew. Chem. 37, 2689 (1998)Google Scholar
  52. 52.
    R. Oda, M. Schmutz, S.J. Candau, F.C. Mackintosh, Nature 399, 566 (1999)ADSGoogle Scholar
  53. 53.
    I.A. Nyrkova, A.N. Semenov, Soft Matter 6, 501 (2010)ADSGoogle Scholar
  54. 54.
    R. Lipowsky, Nature 349, 475 (1991)ADSGoogle Scholar
  55. 55.
    W. Helfrich, J. Prost, Phys. Rev. A 38, 3065 (1988)ADSGoogle Scholar
  56. 56.
    D.S. Chung, G.B. Benedek, F.M. Konikoff, J.M. Donovan, Proc. Natl. Acad. Sci. U.S.A. 90, 11341 (1993)ADSGoogle Scholar
  57. 57.
    Z.C. Tu, U. Seifert, Phys. Rev. E 76, 031603 (2007)ADSGoogle Scholar
  58. 58.
    Y. Wang, D. Zhou, H. Li, R. Li, Y. Zhong, X. Sun, X. Sun, J. Mater. Chem. C 2, 6402 (2014)Google Scholar
  59. 59.
    M.S. Spector, V.J. Selinger, A. Singh, J.M. Rodriguez, R.R. Price, J.M. Schnur, Langmuir 14, 3493 (1999)Google Scholar
  60. 60.
    A. Brizard, C. Aim, T. Labrot, I. Huc, D. Berthier, F. Artzner, B. Desbat, R. Oda, J. Am. Chem. Soc. 129, 3754 (2007)Google Scholar
  61. 61.
    W. Si et al., Tetrahedron Lett. 52, 2484 (2011)Google Scholar
  62. 62.
    D. Berthier, T. Buffeteau, J.-M. Leger, R. Oda, I. Huc, J. Am. Chem. Soc. 124, 13486 (2002)Google Scholar
  63. 63.
    R. Oda, F. Artzner, M. Laguerre, I. Huc, J. Am. Chem. Soc. 130, 14705 (2008)Google Scholar
  64. 64.
    D.G. Rhodes et al., Chem. Phys. Lipids 49, 39 (1988)Google Scholar
  65. 65.
    J.B. Lando, R.V. Sudiwala, Chem. Mater. 2, 594 (1990)Google Scholar
  66. 66.
    M. Caffrey, J. Hogan, A.S. Rudolph, Biochemistry 30, 2134 (1991)Google Scholar
  67. 67.
    E. Sackmann, A. Fischer, W. Frey, in Physics of Amphiphilic Layers (Springer, Berlin, 1987)Google Scholar
  68. 68.
    D.R. Nelson, L. Peliti, J. Phys. (Paris) 48, 1085 (1987)Google Scholar
  69. 69.
    H.S. Seung, D.R. Nelson, Phys. Rev. A 38, 1005 (1988)ADSGoogle Scholar
  70. 70.
    B.N. Thomas et al., Science 267, 1635 (1995)ADSGoogle Scholar
  71. 71.
    A. Aggeli, M. Bell, N. Boden et al., Nature 386, 259 (1997)ADSGoogle Scholar
  72. 72.
    I.A. Nyrkova, A.N. Semenov, A. Aggeli, N. Boden, Eur. Phys. J. B 17, 481 (2000)ADSGoogle Scholar
  73. 73.
    A. Aggeli, M. Bell, N. Boden, J.N. Keen, T.C.B. McLeish, I. Nyrkova, S.E. Radford, A. Semenov, J. Mater. Chem. 7, 1135 (1997)Google Scholar
  74. 74.
    A. Aggeli, M. Bell, N. Boden, R. Harding, T.C.B. McLeish, I. Nyrkova, S.E. Radford, A. Semenov, Biochemist 22, 10 (2000)Google Scholar
  75. 75.
    I.A. Nyrkova, A.N. Semenov, A. Aggeli, M. Bell, N. Boden, T.C.B. McLeish, Eur. Phys. J. B 17, 499 (2000)ADSGoogle Scholar
  76. 76.
    A. Aggeli, I.A. Nyrkova, M. Bell, R. Harding, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Proc. Natl. Acad. Sci. U.S.A. 98, 11857 (2001)ADSGoogle Scholar
  77. 77.
    A. Aggeli, I.A. Nyrkova, M. Bell, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Exploiting peptide self-assembly to engineer novel biopolymers: tapes, ribbons, fibrils and fibres, in Self-assembling Peptide Systems in Biology Medicine and Engineering, edited by A. Aggeli, N. Boden, S. Zhang (Kluwer Academic Publishers, 2001) pp. 1--17Google Scholar
  78. 78.
    R.P.W. Davies, A. Aggeli, A.J. Beevers, N. Boden, L.M. Carrick, C.W.G. Fishwick, T.C.B. McLeish, I.A. Nyrkova, A.N. Semenov, Supramol. Chem. 18, 435 (2006)Google Scholar
  79. 79.
    R.P.W. Davies, B. Liu, S. Maude, L.M. Carrick, Irina Nyrkova, Tom C. McLeish, Sarah A. Harris, Biopolymers 110, e23073 (2018)Google Scholar
  80. 80.
    A. Aggeli, M. Bell, N. Boden, L. Carrick, R. Harding, T.C.B. McLeish, I.A. Nyrkova, A.N. Semenov, Impact of chirality on one-dimensional self-assembling systems, in Self-Assembly (IOS Press, 2003) pp. 92--104Google Scholar
  81. 81.
    F.E. Cohen, J. Mol. Biol. 293, 313 (1999)Google Scholar
  82. 82.
    S.Y. Tan, M.B. Pepys, Amyloidosis Histopathol. 25, 403 (1994)Google Scholar
  83. 83.
    C.F. Jordan, L.S. Lerman, J.H. Venable, Nature 236, 67 (1972)Google Scholar
  84. 84.
    A.A. Zinchenko, V.G. Sergeyev, V.A. Kabanov, S. Murata, K. Yoshikawa, Angew. Chem., Int. Ed. 43, 2377 (2004)Google Scholar
  85. 85.
    A.A. Zinchenko, N. Chen, S. Murata, K. Yoshikawa, ChemBioChem 6, 1419 (2005)Google Scholar
  86. 86.
    I.A. Nyrkova, A.N. Semenov, Soft Matter 5, 979 (2009)ADSGoogle Scholar
  87. 87.
    S. Wang, Y. Zhang, Y. Xia, B. Song, Nanoscale 7, 17848 (2015)ADSGoogle Scholar
  88. 88.
    J. Kim, J. Lee, W.Y. Kim, H. Kim, S. Lee, H.C. Lee, Y.S. Lee, M. Seo, S.Y. Kim, Nat. Commun. 6, 6959 (2015)ADSGoogle Scholar
  89. 89.
    D.D. La Anuradha, M. Al Kobaisi, S.V. Bhosale, Sci. Rep. 5, 15652 (2015)ADSGoogle Scholar
  90. 90.
    B. Song, B. Liu, Y. Jin, X. He, D. Tang, G. Wu, S. Yin, Nanoscale 7, 930 (2015)ADSGoogle Scholar
  91. 91.
    W. Yang, X. Chai, L. Chi, X. Liu, Y. Cao, R. Lu, Y. Jiang, X. Tang, H. Fuchs, T. Li, Chem. Eur. J. 5, 1144 (1999)Google Scholar
  92. 92.
    J.M. Ribo, J. Crusats, F. Sagues, J. Claret, R. Rubires, Science 292, 2063 (2001)Google Scholar
  93. 93.
    S. Pakhomov, R.P. Hammer, B.K. Mishra, B.N. Thomas, Proc. Natl. Acad. Sci. U.S.A. 100, 3050 (2003)ADSGoogle Scholar
  94. 94.
    U. Seifert, J. Shillcock, P. Nelson, Phys. Rev. Lett. 77, 5237 (1996)ADSGoogle Scholar
  95. 95.
    J.V. Selinger, Z.-G. Wang, R.F. Bruinsma, C.M. Knobler, Phys. Rev. Lett. 70, 1139 (1993)ADSGoogle Scholar
  96. 96.
    J.V. Selinger, J.M. Schnur, Phys. Rev. Lett. 71, 4091 (1993)ADSGoogle Scholar
  97. 97.
    J.V. Selinger, F.C. MacKintosh, J.M. Schnur, Phys. Rev. E 53, 3804 (1996)ADSGoogle Scholar
  98. 98.
    R. Koynova, M. Caffrey, Biophys. Acta 1376, 91 (1998)Google Scholar
  99. 99.
    O. Lenz, F. Schmid, Phys. Rev. Lett. 98, 058104 (2007)ADSGoogle Scholar
  100. 100.
    A.H. de Vries, S. Yefimov, A.E. Mark, S.J. Marrink, Proc. Natl. Acad. Sci. U.S.A. 102, 5392 (2005)ADSGoogle Scholar
  101. 101.
    A. Singh et al., Chem. Phys. Lipids 47, 135 (1988)Google Scholar
  102. 102.
    I. Nyrkova, E. Moulin, J.J. Armao IV, M. Maaloum, B. Heinrich, M. Rawiso, F. Niess, J.-J. Cid, N. Jouault, E. Buhler, A.N. Semenov, N. Giuseppone, ACS Nano 8, 10111 (2014)Google Scholar
  103. 103.
    J.J. Armao IV, I. Nyrkova, G. Fuks, A. Osypenko, M. Maaloum, E. Moulin, R. Arenal, O. Gavat, A. Semenov, N. Giuseppone, J. Am. Chem. Soc. 139, 2345 (2017)Google Scholar
  104. 104.
    D.M. Bassani, J.-M. Lehn, G. Baum, D. Fenske, Angew. Chem., Int. Ed. 36, 1845 (1997)Google Scholar
  105. 105.
    N. Diaz, F.-X. Simon, M. Schmutz, M. Rawiso, G. Decher, J. Jestin, P.J. Mesini, Angew. Chem. 44, 3260 (2005)Google Scholar
  106. 106.
    N. Diaz, F.X. Simon, M. Schmutz, P. Mesini, Macromol. Symp. 241, 68 (2006)Google Scholar
  107. 107.
    F.X. Simon, T.T. Tam Nguyen, N. Diaz, M. Schmutz, B. Deme, J. Jestin, J. Combet, P.J. Mesini, Soft Matter 9, 8483 (2013)ADSGoogle Scholar
  108. 108.
    I.A. Nyrkova, A.N. Semenov, Polymer 145, 202 (2018)Google Scholar
  109. 109.
    Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007)Google Scholar
  110. 110.
    E. Moulin, F. Niess, M. Maaloum, E. Buhler, I. Nyrkova, N. Giuseppone, Angew. Chem., Int. Ed. 49, 6974 (2010)Google Scholar
  111. 111.
    I.A. Nyrkova, A.N. Semenov, Eur. Phys. J. E 24, 167 (2007)Google Scholar
  112. 112.
    E. Moulin, F. Niess, N. Jouault, E. Buhler, N. Giuseppone, Nanoscale 4, 6748 (2012)ADSGoogle Scholar
  113. 113.
    V. Faramarzi, F. Niess, E. Moulin, M. Maaloum, J.-F. Dayen, J.-B. Beaufrand, S. Zanettini, B. Doudin, N. Giuseppone, Nat. Chem. 4, 485 (2012)Google Scholar
  114. 114.
    E. Moulin, J.-J. Martin, N. Giuseppone, Adv. Mater. 25, 477 (2013)Google Scholar
  115. 115.
    N. Giuseppone, Acc. Chem. Res. 45, 2178 (2012)Google Scholar
  116. 116.
    J.J. Armao, M. Maaloum, T. Ellis, G. Fuks, M. Rawiso, E. Moulin, N. Giuseppone, J. Am. Chem. Soc. 136, 11382 (2014)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Charles Sadron, CNRS - UPR 22Université de StrasbourgStrasbourg Cedex 2France

Personalised recommendations